The Overview:
Activation Maximization (AM)是用来可视化各个卷积层的输入偏好。 通过观测输入偏好,我们可以更好的了解CNN的卷积层到底学习到了什么。卷积学习得到的特征可以通过一帧合成图像来最大化神经元的激活。为了合成这个输入偏好,我们可以通过对CNN的输入像素进行反复迭代来最大化神经元的激活。
换言之,我们可以通过合成一个输入样式来激活神经元,使得神经元激活最大化的输入样式便是神经元的输入偏好,也就是通过输入偏好可以观察神经元到底学习了什么。
Activation Maximization 是由Erhan在2009年提出 D. Erhan, Y. Bengio, A. Courville and P. Vincent, Visualizing higher-layer features of a deep network, (2009), p3 。Erhan利用Activation Maximization观测了Deep Belief Net隐层神经元的输入偏好和Stacked Denoising Auto-Encoder在MNIST数据集学习到的特征。之后,Simonyan 用这个算法来可视化CNN的最后一层神经元。K. Simonyan, A. Vedaldi and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps。Google也通过这种方法来集成可视化特征样式应用在Inception网络中Inceptionism: Going deeper into neural networks。Yosinksi则将AM运用到更广泛的范围中,可以可视化CNN所有层中的各个神经元。Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
近来一些的AM算法则尝试对输出的样式进行在更加容易的解释和。总而言之,AM在解释神经元的interests和层次特征方面体现出了强大的能力。
Algorithm
AM算法是通过输入一帧合成样式图像 x ∗ x^{*} x∗来最大化神经元的激活函数,其表达式可以为:
x ∗ = a r g m a x x a i , l ( θ , x