基于卷积神经网络故障诊断模型的 t-SNE特征可视化
1. t-sne可视化基本概念
- 流形学习的设计目的
Manifold learning is an approach to non-linear dimensionality reduction. Algorithms for this task are based on the idea that the dimensionality of many data sets is only artificially high.
Manifold是一种非线性降维的方法。这个任务的算法是基于这样一种想法,即许多数据集的维数只是人为地偏高。
Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-linear structure in data. Though supervised variants exist, the typical manifold learning problem is unsupervised: it learns the high-dimensional structure of the data from the data itself, without the use of predetermined classifications.
Manifold可以被认为是一种推广线性框架的尝试,如PCA,以敏感的非线性数据结构。虽然有监督变量存在,但典型的Manifold
本文介绍了t-SNE作为非线性降维工具,用于高维数据的可视化,特别是在机器学习和深度学习中的应用。通过将数据点的相似性转化为概率并最小化低维和高维数据的Kullback-Leibler差异,t-SNE能有效地展示数据的结构。在卷积神经网络故障诊断中,t-SNE可以帮助理解模型的特征学习。此外,文章还提到了sklearn.manifold.TSNE函数的关键参数,并提及使用tensorflow2进行特征可视化的方法。
订阅专栏 解锁全文
730

被折叠的 条评论
为什么被折叠?



