Apollo自动驾驶教程学习笔记-Apollo感知之旅3-3

本文是Apollo自动驾驶教程的学习笔记,重点介绍了感知算法,包括Lidar的启发式和DL方式,视觉感知、检测、CNN分割,以及Radar和超声波感知。深度学习在点云分割和视觉感知中起到关键作用,而感知红绿灯是一项复杂任务,需要高精度和鲁棒性。文章讨论了相机和Lidar在感知中的优缺点,并提出未来技术发展的思考。
摘要由CSDN通过智能技术生成

视频链接:http://bit.baidu.com/Course/detail/id/289.html http://bit.baidu.com/Course/detail/id/290.html
讲师:夏添 Apollo主任架构师

感知算法

简单列一下这一节内容的主要章节,这一集视频有1个小时,内容很丰富,夏添老师也是我看了这么多集课程后感觉讲解的最好的一位。

  • Lidar感知:
    • 启发式方式:Ncut
    • DL方式:CNNSeg
  • 视觉感知:
    • DL检测
    • 跟踪
    • 红绿灯识别
  • Radar感知
  • 超声波感知

Lidar感知

激光雷达采集到的是点云信息,apollo无人车上使用的是64线激光雷达,转速是10HZ,所以大概一帧点云能够采集几十万个点,这些点需要经过算法,最后估计出道路上的障碍物,包括类别、朝向、速度等。
其中算法比较核心的一个工作是点云分割。

启发式方式

基于一个假设,就是:空间平滑性假设,即认为在空间上连续的点应该属于一个障碍物(其实我认为这个假设本身就已经不完全成立,从而限制了算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值