Apollo自动驾驶教程学习笔记-Apollo规划技术详解6-4

本文介绍了Apollo自动驾驶中规划优化问题的解决方法,涉及牛顿法、启发式搜索、拉格朗日方法。牛顿法在优化过程中考虑目标函数的一阶导数变化率,适合二次规划但可能导致局部最优。启发式搜索结合动态规划和二次规划,处理非凸问题。拉格朗日方法用于处理带约束的优化问题。在实际应用中,Apollo的EM Planning采用了启发式搜索策略。
摘要由CSDN通过智能技术生成

课程链接:http://bit.baidu.com/Course/detail/id/298.html
讲师:樊昊阳 百度Apollo研发工程师

说明:因个人工作方向变更的原因,该系列学习笔记不再更新,如有影响还请抱歉

规划中的优化问题

这节课主要从数学角度出发讲解了如何对规划问题中做优化。又把我大学学过的最优化方法翻出来了。
由于基本讲的都是数学知识,所以我记录的笔记不太多,可以从其他地方学到更系统的知识,这里只做点题。

牛顿法

牛顿法是一种求解问题最优解的方法,其核心是泰勒展开,当取泰勒一阶内容作为优化函数时,是binary search问题,当使用泰勒二阶时,是牛顿法,牛顿法考虑目标函数一阶导的变化率。
牛顿法收敛很快,速度是指数平方,通常在几个迭代后就能收敛。
之后发展出来的二次规划算法,和牛顿法的本质是一样的。
牛顿法要求导数单调,当不单调时可能会找到局部最优解,也就是说,牛顿法对于解决非凸问题可能不是最优的。

启发式搜索

为了解决非凸问题,可以采用分段的思想,对目标函数先使用动态规划问题划分成小段,然后用二次规划方法去求解某个最优小段的优化问题,这是一种组合优化问题,也叫启发式搜索。
Apollo中的EM Planning 中的核心思想就是这个启发式搜索,其实就是将动态规划和二次规划结合起来,逐渐缩小搜索的范围。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值