课程链接:http://bit.baidu.com/Course/detail/id/298.html
讲师:樊昊阳 百度Apollo研发工程师
说明:因个人工作方向变更的原因,该系列学习笔记不再更新,如有影响还请抱歉
规划中的优化问题
这节课主要从数学角度出发讲解了如何对规划问题中做优化。又把我大学学过的最优化方法翻出来了。
由于基本讲的都是数学知识,所以我记录的笔记不太多,可以从其他地方学到更系统的知识,这里只做点题。
牛顿法
牛顿法是一种求解问题最优解的方法,其核心是泰勒展开,当取泰勒一阶内容作为优化函数时,是binary search问题,当使用泰勒二阶时,是牛顿法,牛顿法考虑目标函数一阶导的变化率。
牛顿法收敛很快,速度是指数平方,通常在几个迭代后就能收敛。
之后发展出来的二次规划算法,和牛顿法的本质是一样的。
牛顿法要求导数单调,当不单调时可能会找到局部最优解,也就是说,牛顿法对于解决非凸问题可能不是最优的。
启发式搜索
为了解决非凸问题,可以采用分段的思想,对目标函数先使用动态规划问题划分成小段,然后用二次规划方法去求解某个最优小段的优化问题,这是一种组合优化问题,也叫启发式搜索。
Apollo中的EM Planning 中的核心思想就是这个启发式搜索,其实就是将动态规划和二次规划结合起来,逐渐缩小搜索的范围。