Apollo学习笔记(20)激光SLAM综述

本文深入探讨了激光SLAM(Simultaneous Localization And Mapping)的处理流程,包括激光数据预处理、帧间匹配算法如ICP、NDT等,以及回环检测和后端非线性优化。同时,指出了实际环境中如动态物体、环境变化等因素对SLAM的挑战,并介绍了2D激光SLAM的不同方法,如滤波和图优化技术。
摘要由CSDN通过智能技术生成

激光SLAM的处理流程

  • 激光雷达数据处理
  • 激光数据帧间匹配(前端匹配)
  • 激光回环检测
  • 非线性最小二成优化(后端优化)

激光数据的预处理

  • 激光雷达运动畸变去除
  • 里程计数据矫正
  • 不同系统之间的时间同步

数据帧间匹配算法

  • ICP(Iterrative Closest Point)
  • PI-ICP(point to line Iterrative Closest Point)
  • NDT(Normal Distribution Transformation)
  • CSM(Correlation Scan Match)

数据回环检测

  • Scan -to-Scan
  • Scan-to-Map
  • Map-to-Map

后端优化

  • 高斯牛顿法
  • LM法

2D激光SLAM的发展

Filter-Based

  • EKF-SLAM
  • FastSLAM
  • Gmapping
  • Optimal RBPF

Graph-Based

  • Globally Consistent Range Scan For Environment Mapping
  • Incremental Mapping of Large Cyclic Environments
  • Karto SLAM
  • Cartographer

实际环境中的问题

  • 动态物体
  • 环境变化
  • 几何结构相似环境
  • 建图的操作复杂
  • 全局定位
  • 地面材质的变化
  • 地面凹凸不平
  • 机器人载重的改变
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值