世界围绕爱转动
码龄11年
关注
提问 私信
  • 博客:23,614
    23,614
    总访问量
  • 35
    原创
  • 704,280
    排名
  • 51
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:德国
  • 加入CSDN时间: 2014-07-09
博客简介:

qq_17437129的博客

查看详细资料
个人成就
  • 获得10次点赞
  • 内容获得7次评论
  • 获得66次收藏
创作历程
  • 35篇
    2020年
成就勋章
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络图像处理数据分析
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Apollp自动驾驶实践03——车辆动力学标定&启动车辆循迹

Apollp自动驾驶实践03——车辆动力学标定&启动车辆循迹05 车辆动力学标定本节主要介绍了通过Apollo软件进行车辆踏板标定的基本原理和方法步骤,了解车辆标定的作用,掌握标定后的数据处理过程,通过实际操作演示标定过程,帮助开发者快速掌握车辆方法和标定流程。标定的目的这里说的是Apollo软件的标定(系统标定)。依据车辆标定表来通过软件供给Apollo车辆进行判断。控制油门和刹车的比例。不同的车使用标定表不同。Apollo标定的步骤1.拉起docker2.启动模块
原创
发布博客 2020.08.14 ·
1885 阅读 ·
1 点赞 ·
5 评论 ·
15 收藏

Apollp自动驾驶实践02——软件&定位模块配置

Apollp自动驾驶实践——从Apollo开发套件循迹开始03 软件系统部署操作系统软件:Unbuntu 14.04 LTS、Linux4.4内核、Apollo1.5.5内核驱动软件:GPU显卡驱动、ESD-CAN卡驱动或者Socket CAN卡驱动应用软件:Docker软件、Git软件、Apollo源代码BIOS设置:工控机启动时按F2进入设置菜单,选择Advanced中的Smart Fan Control设置风扇参数。选择Power中的SKU Power Config,设置为MAX TD
原创
发布博客 2020.08.14 ·
960 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

Apollp自动驾驶实践01——导论&硬件系统

Apollp自动驾驶实践——从Apollo开发套件循迹开始00 导论自动驾驶系统集车辆学、人工智能、计算机科学、自动控制等多学科应用于一体,是一个非常复杂的系统。搭建一个闭环的自动驾驶系统涉及技术门槛高,还面临着资金成本高、政策约束等多方面的挑战。因而在以往的自动驾驶学习课程中,以理论概念为主,缺乏闭环的上车实践。 Apollo开源平台的出现,极大的降低学习自动驾驶的技术门槛; 而Apollo开发套件的出现,又再一次降低了搭建闭环自动驾驶系统的所涉及到的车辆硬件成本高、采购周期长、测试场地限制等各种问题
原创
发布博客 2020.08.14 ·
670 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

Apllo进阶课程31-Apollo实战——障碍物感知和路径规划能力实战

Apollo实战——障碍物感知和路径规划能力实战环境感知在自动驾驶汽车应用中占据了核心地位。一辆车要实现自动驾驶,障碍物感知是最基础也是最核心的功能。相比于最基本的Apollo 1.0版本,Apollo 2.0版增加的主要功能模块是感知和规划。首先,我们回顾Apollo的感知模块。每种传感器都有自己的优势和劣势,如图所示。从图中可以看出没有一种设备可以满足所有的场景,只有将各种设备融合在一起才能达到相对稳定感知结果。也就是从Apollo 2.0开始,我们开始使用多传感器融合的方式做感知。多传感器融合需要
原创
发布博客 2020.08.14 ·
826 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Apllo进阶课程30-Apollo实战——车辆与循迹驾驶能力实战

Apollo实战——车辆与循迹驾驶能力实战循迹自动驾驶是指让车辆按照录制好的轨迹线进行自动驾驶,其涉及到自动驾驶中最基本的底盘线控能力、定位能力、控制能力,是自动驾驶系统的一个最小子集。在搭建完自动驾驶车辆的软、硬件环境以后,通常采用循迹测试进行验证,如图所示。循迹测试涉及最底下的几个模块,只需要定位、控制以及Canbus这三个模块,是Apollo的最小子集,通过循迹可以验证车的线控能力以及模块的整体集成能力。那么如何做循迹测试呢?首先在硬件上,我们需要一辆线控车辆、一个工控机以及惯导系统GPS和
原创
发布博客 2020.08.14 ·
604 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程29-Apollo实战——本机演示实战

Apollo实战——本机演示实战Apollo是一个开放的、完整的、安全的平台,将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统,快速搭建一套属于自己的自动驾驶系统。要使用Apollo进行实战,首先要对Apollo的代码结构有一个基本的认识。图1是Apollo项目的基本代码结构。包括Docker和Docs(主要放置一些文档)、Modules(核心模块算法都在该文件夹下)以及Scripts和Tools等。包括之前理论学习的Perception、Localization、Prediction 、高
原创
发布博客 2020.08.14 ·
365 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程28-Azure仿真平台使用

Azure仿真平台使用Azure是一种灵活和支持互操作的平台,它可以被用来创建云中运行的应用或者通过基于云的特性来加强现有应用。它开放式的架构给开发者提供了Web应用、互联设备的应用、个人电脑、服务器、或者提供最优在线复杂解决方案的选择。本节补充介绍另一个仿真平台,它是基于微软的一个仿真平台Azure,该仿真平台不需要本地部署。在Apollo的Github账号上可看见图1所示的两个状态,左侧的Build用来做持续集成。由于有很多的开发者会提交自己对Apollo修改后的代码,我们不可能每次都把代码下载
原创
发布博客 2020.08.14 ·
193 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程27-Apollo安装过程概述

Apollo安装过程概述Apollo是一个自动驾驶的平台,推荐的参考运行环境为:ThinkPAD X240、CPU:i5 、四核 、内存 8G、 硬盘容量40G以上。安装过程如图1所示,安装主要分为三步。安装基础环境,拉取Docker镜像并创建容器,进入容器编译源码。下面介绍具体的安装过程。首先是安装git,因为Apollo代码是托管在github平台的,所以需要git工具。然后使用git将Apollo源码克隆到本地,如图2所示。下载源码之后,还要安装Docker环境,可以使用Apollo提供
原创
发布博客 2020.08.14 ·
352 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Apllo进阶课程26-Apollo平台的快速入门

Apollo平台的快速入门Apollo是向汽车行业及自动驾驶领域的合作伙伴提供一个开放、完整、安全的软件平台,帮助他们结合车辆和硬件系统,快速搭建一套属于自己的完整的自动驾驶系统。本节主要和大家分享Apollo的快速入门方法,包括编译、高精地图和实时相对地图、一些调试工具以及新加入的计算单元和模块。首先,我们对Apollo项目的Issue也进行了一些统计分析,结果如图1所示。从图中可以看出大家对感知、Build、Docker、规划、调试等方面的内容比较感兴趣。另外是在还没有硬件的情况下,如何在理想的环
原创
发布博客 2020.08.13 ·
340 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Apllo进阶课程25-Apollo自动驾驶架构介绍

Apollo自动驾驶架构介绍自动驾驶硬件架构:一般采用激光雷达作为主要感知传感器,同时结合摄像头、GPS/IMU、毫米波雷达、超声波雷达等,以NVIDIA Drive PX2 或 Xavier作为主要计算平台,在工业PC机上运行各种算法模块,通过线控技术控制车辆行驶。百度开源自动驾驶系统Apollo的架构图如下所示:Apollo自动驾驶平台的架构如下图所示。该架构是Apollo 在2017年7月5号发布的,主要包括四个部分:最底层的车辆平台,往上一层的传感器层,第三层的核心软件层以及最上层的云服务层
原创
发布博客 2020.08.13 ·
3019 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

Apllo进阶课程24-Apollo ROS深入介绍

Apollo ROS深入介绍ROS是一个强大而灵活的机器人编程框架,从软件构架的角度说,它是一种基于消息传递通信的分布式多进程框架。ROS本身是基于消息机制的,可以根据功能把软件拆分成为各个模块,每个模块只是负责读取和分发消息,模块间通过消息关联。ROS Packages创建一个ROS开发环境和写一个C++工程有点类似,通过catkin create可以创建一个简单的工程。其中的文件组织方式如上图所示,包括:SRC存放源文件;MSG存放节点之间进行通信的消息定义;SRV存放节点之间进行服务通信
原创
发布博客 2020.08.13 ·
339 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程24-Apollo ROS原理—3

Apollo ROS原理—3ROS是一个强大而灵活的机器人编程框架,从软件构架的角度说,它是一种基于消息传递通信的分布式多进程框架。ROS本身是基于消息机制的,可以根据功能把软件拆分成为各个模块,每个模块只是负责读取和分发消息,模块间通过消息关联。ROS ServicesROS提供了三种节点之间通信的方式:第一种是大家最常用的基于消息的订阅发布模型,第二种就是ROS Service,第三种Param,它借鉴了Service的思想。Service在自动驾驶系统里面使用的比较广泛,与基于消息发布订阅模型
原创
发布博客 2020.08.13 ·
238 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程23-Apollo ROS原理—2

Apollo ROS原理—2在ROS系统中,从数据的发布到订阅节点之间需要进行数据的拷贝。在数据量很大的情况下,很显然这会影响数据的传输效率。所以Apollo项目对于ROS第一个改造就是通过共享内存来减少数据拷贝,以提升通信性能。Apollo ROS对ROS的改进去中心化网络拓扑去中心化网络拓扑的原因使用RTPS服务发现协议实现完全的P2P网络拓扑Apollo ROS进行了比较大的改造:先把这个中心化的网络拓扑给去掉,然后建立了一个点对点之间的一个复杂网络拓扑,主要是使用RTPS服务发现
原创
发布博客 2020.08.13 ·
218 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程22-Apollo ROS原理—1

Apollo ROS原理—1ROS在开发过程中,基于功能把整个自动驾驶系统分成多个模块,每个模块负责自己消息的接收、处理、发布。当模块需要联调时,通过框架可以把各个模块快速的集成到一起。ROS的不足ROS是很多大学或者实验室进行探索性项目实验所采用的基本框架,但在实际的自动驾驶工程化需求面前,还有很多明显不足。大数据传输性能瓶颈实验性项目里面采用的Topic是Message,数据量是比较小的,可能只有几K或者最多1~2MHZ,但在实际自动驾驶场景里面数据量非常大。例如Lidar一帧数据大概是7M
原创
发布博客 2020.08.13 ·
249 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程21-Apollo ROS背景介绍

Apollo ROS背景介绍ROS是机器人学习和无人车学习最好Linux平台软件,资源丰厚。无人车的规划、控制算法通常运行在Linux系统上,各个模块通常使用ROS进行连接。引入ROS的背景介绍如上图所示:自动驾驶系统包括障碍物检测、行为决策、路径规划等一系列复杂的工程模块,同时还要支持激光雷达、相机、GPS等一系列传感器的实时数据收集和实时处理。如何将这些功能模块相互独立又相互交互集成一起,构建成一个稳定的自动驾驶系统是一个巨大的挑战,也是自动驾驶计算框架所承载的基本功能。首先自动驾驶系统还处在
原创
发布博客 2020.08.13 ·
220 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程20-Apollo规划技术详解——Understand More on the MP Difficulty

Apollo规划技术详解——Understand More on the MP DifficultyEM是一个在已知部分相关变量的情况下,估计未知变量的迭代技术,EM的算法流程如下:1.初始化分布参数;2.重复直到收敛。重复直到收敛的步骤如下:1.E步骤:根据隐含数据的假设值,给出当前的参数的极大似然估计;2.M步骤:重新给出未知变量的期望估计,应用于缺失值。本节主要介绍 Apollo 中的 EM planner 。在前面的课程中,我们提到优化问题的三个方面:目标函数、约束条件和求解方法。那么
原创
发布博客 2020.08.12 ·
539 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Apllo进阶课程19- Apollo规划技术详解——Optimization Inside Motion Planning

Apollo 规划技术详解——Optimization Inside Motion Planning在自动驾驶软件的开发中,运动规划是最核心的模块之一。它将综合感知、定位和地图等信息,规划出无人车未来一段时间(约10秒)的一系列动作指令(方向盘转角、油门、刹车等)。运动规划的问题——目标函数(objective function)和约束(constraint)。运动规划的最终目的就是找出一条最优的运动轨迹,使其能够最小化(或者最大化)目标函数,并且不违背任何约束。约束问题的核心有三点:第一是目标函数的
原创
发布博客 2020.08.12 ·
615 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程18-Apollo 规划技术详解——Motion Planning Environment

Apollo 规划技术详解——Motion Planning Environment自动驾驶汽车核心技术包括环境感知、行为决策、运动规划与控制等方面。其中,行为决策系统、运动规划与控制系统作为无人驾驶汽车的“大脑”,决定了其在不同交通驾驶场景中行驶的合理性与安全性。在自动驾驶中,我们将环境抽象成 SL 坐标系,在此坐标系下的曲线光滑度是有要求的。首先,曲线本身要平滑。其次,其曲率也要满足平滑的特性。因此需要对轨迹线进行平滑处理。那么能不能先生成一条线,然后再进行平滑,能不能对 Curvature 进行一
原创
发布博客 2020.08.12 ·
500 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Apllo进阶课程17- Apollo规划技术详解——Motion Planning with Environment

Apollo规划技术详解——Motion Planning with Environment当行为层决定要在当前环境中执行的驾驶行为时,其可以是例如巡航-车道,改变车道或右转,所选择的行为必须被转换成路径或轨迹,可由低级反馈控制器跟踪。所产生的路径或轨迹必须满足车辆动力学约束的,对乘客来说是舒适的,并且避免与车载传感器检测到的障碍物的碰撞。寻找这样的路径或轨迹的任务是运动规划系统的责任。由于规划是感知和控制之间的纽带,当前的新规划算法开发多考虑感知的不确定性以及控制的约束。在动态环境数据采集过程中,路径
原创
发布博客 2020.08.12 ·
348 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Apllo进阶课程16- Apollo规划技术详解——Motion Planning with Autonomous Driving

Apollo规划技术详解——Motion Planning with Autonomous Driving自动驾驶车辆的规划决策模块负责生成车辆的行驶行为,是体现车辆智慧水平的关键。规划决策模块中的运动规划环节负责生成车辆的局部运动轨迹,是决定车辆行驶质量的直接因素。在大多数情况下,运动规划问题的精确解决方案在计算上是难以处理的。 因此,数值近似方法通常在实践中使用。在最流行的数值方法中,变分方法将问题视为函数空间中的非线性优化,图形搜索方法构建车辆状态空间的图形离散化并使用图形搜索测量方法搜索最短路径
原创
发布博客 2020.08.12 ·
444 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多