Jetson AGX Orin 下 YOLOX C++部署

本文详细介绍了在Jetpack5.1.2、CUDA11.4、Cudnn8.6.0和TensorRT8.5.2环境下配置YOLOX的训练环境,包括使用conda创建环境,下载权重文件并导出Engine模型。部署过程中涉及修改yolox.cpp和CmakeLists文件,但作者提到Tiny模型识别出现错误,尽管整体过程尚可。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、系统环境:

Jetpack5.1.2、CUDA11.4、Cudnn8.6.0、Tensorrt8.5.2、OpenCV4.5;

2、YOLOX 训练环境配置

conda create -n yolox python==3.8 -y # for Linux
conda activate yolox

按照要求下载指定包,关于Torch等包安装类是博客较程很多。

3、下载权重文件和导出enginen模型

python tools/trt.py -n yolox-s -c path/yolox_s.pth

导出的模型默认放在YOLOX/demo/TensorRT/cpp文件夹中

然后进行部署,需要留意的就是更改yolox.cpp文件,和CmakeLIsts文件

其中yolox.cpp文件 主要修改图像的输入大小,tiny、nano改为416*416, S、M 为640*640;

CmakeLIsts文件 更改cuda 和cudnn的路径,tensorrt路径注释掉。

# cuda
include_directories(/usr/local/cuda-11.4/include)
link_directories(/usr/local/cuda-11.4/lib64)
# cudnn
include_directories(/usr/local/cuda/include)
link_directories(/usr/lib/aarch64-linux-gnu)

4、编译然后运行

在build文件夹下,运行

./yolox ../model_trt.engine -i ../../../../assets/dog.jpg

/home/nvidia/code/deeplearning/YOLOX/demo/TensorRT/cpp/build/det_res.jpg

我用的为tiny模型,把狗识别为猫了,不知道为什么,不过整体还行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值