YOLO系列论文综述(从YOLOv1到YOLOv11)【第14篇:YOLOv11——在速度和准确性方面具有无与伦比的性能】


YOLO系列博文:

  1. 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】
  2. 【第2篇:YOLO系列论文、代码和主要优缺点汇总】
  3. 【第3篇:YOLOv1——YOLO的开山之作】
  4. 【第4篇:YOLOv2——更好、更快、更强】
  5. 【第5篇:YOLOv3——多尺度预测】
  6. 【第6篇:YOLOv4——最优速度和精度】
  7. 【第7篇:YOLOv5——使用Pytorch框架、AutoAnchor、多尺度预训练模型】
  8. 【第8篇:YOLOv6——更高的并行度、引入量化和蒸馏以提高性能加速推理】
  9. 【第9篇:YOLOv7——跨尺度特征融合】
  10. 【第10篇:YOLOv8——集成检测、分割和跟踪能力】
  11. 【第11篇:YOLO变体——YOLO+Transformers、DAMO、PP、NAS】
  12. 【第12篇:YOLOv9——可编程梯度信息(PGI)+广义高效层聚合网络(GELAN)】
  13. 【第13篇:YOLOv10——实时端到端物体检测】
  14. 【第14篇:YOLOv11——在速度和准确性方面具有无与伦比的性能】
  15. 【第15篇(完结):讨论和未来展望】

1 摘要

  • 发布日期:2024年9月
  • 作者:Ultralytics团队
  • 论文:无
  • 代码https://github.com/ultralytics/ultralytics
  • 主要优缺点
    • YOLOv11是在YOLOv8基础上进行了改进,同等精度下参数量降低20%,在速度和准确性方面具有无与伦比的性能;
    • 其流线型设计使其适用于各种应用,并可轻松适应从边缘设备到云 API 等不同硬件平台,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。

2 改进点

YOLO11 是 UltralyticsYOLO 是实时物体检测器系列中的最新产品,以最先进的精度、速度和效率重新定义了可能实现的目标。在之前YOLO 版本令人印象深刻的进步基础上,YOLO11 在架构和训练方法上进行了重大改进,使其成为广泛的计算机视觉任务的多功能选择。

指标对比

  • 增强型特征提取: YOLO11 采用改进的骨干和颈部架构,增强了特征提取能力,从而实现更精确的目标检测和复杂任务性能。

  • 优化效率和速度: YOLO11 引入了完善的架构设计和优化的训练管道,提供更快的处理速度,并在准确性和性能之间保持最佳平衡。

  • 参数更少,精度更高:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比YOLOv8m 减少了 22%,从而在不影响精度的情况下提高了计算效率。

  • 跨环境适应性: YOLO11 可在各种环境中无缝部署,包括边缘设备、云平台和支持NVIDIA GPU 的系统,确保最大的灵活性。

  • 支持的任务范围广泛:包括目标检测、实例分割、图像分类、姿态估计、面向对象检测 (OBB)等等。

3 模型性能

YOLOv11各系列模型:

任务

在COCO上的检测性能:

性能

4 模型架构

网络架构
图片来源:https://blog.csdn.net/weixin_44779079/article/details/142676560

### YOLOv11 系列介绍 YOLOv11 是由 Ultralytics 推出的最新一代目标检测模型,在多个方面继承并发展了前几代的优势[^3]。该系列不仅提升了性能,还引入了许多新的特性改进。 #### 版本特性 ##### 3.1 Backbone:特征提取部分 YOLOv11 的骨干网络采用了更高效的特征提取机制,能够更好地捕捉图像中的多尺度信息。这种设计使得模型在处理复杂场景时表现更加出色[^1]。 ##### 3.2 Neck:增强特征融合能力 为了进一步提升检测精度,YOLOv11 对颈部结构进行了优化,增强了不同层次特征之间的交互作用。这有助于提高小物体检测的效果以及整体定位准确性。 ##### 3.3 Head:预测头的设计革新 新版本改变了原有的输出层结构,采用了一种更为灵活且强大的解码方式来生成最终的结果。这一改动有效降低了误检率,并提高了召回率。 #### 发展历程 自发布以来,YOLO 家族经历了多次迭代更新,每次都在速度与精度之间寻求最佳平衡点。到了 YOLOv11 这一阶段,团队特别注重解决实际应用中遇到的各种挑战,比如如何应对遮挡严重的目标或是极端光照条件下的识别难题等。此外,随着硬件技术的进步,YOLOv11 能够充分利用现代 GPU TPU 提供的强大算力支持,实现了更快捷高效的任务执行过程。 ```python import torch from yolov11 import YOLOv11 model = YOLOv11() input_tensor = torch.randn(1, 3, 640, 640) output = model(input_tensor) print(output.shape) # 输出形状取决于具体配置参数设置情况 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值