【DeepSeek-R1背后的技术】系列博文:
第1篇:混合专家模型(MoE)
第2篇:大模型知识蒸馏(Knowledge Distillation)
第3篇:强化学习(Reinforcement Learning, RL)
第4篇:本地部署DeepSeek,断网也能畅聊!
第5篇:DeepSeek-R1微调指南
第6篇:思维链(CoT)
第7篇:冷启动
第8篇:位置编码介绍(绝对位置编码、RoPE、ALiBi、YaRN)
第9篇:MLA(Multi-Head Latent Attention,多头潜在注意力)
第10篇:PEFT(参数高效微调——Adapter、Prefix Tuning、LoRA)
第11篇:RAG原理介绍和本地部署(DeepSeek+RAGFlow构建个人知识库)
第12篇:分词算法Tokenizer(WordPiece,Byte-Pair Encoding (BPE),Byte-level BPE(BBPE))
第13篇:归一化方式介绍(BatchNorm, LayerNorm, Instance Norm 和 GroupNorm)
第14篇:MoE源码分析(腾讯Hunyuan大模型介绍)
目录
从技术报告中,我们可以看到DeepSeek-R1需要先冷启动,然后再通过GRPO强化学习去训练。
那么,DeepSeek-R1为什么需要冷启动?
1 什么是“冷启动数据”?
在 AI 训练中,“冷启动”(Cold Start) 这个概念类似于刚买了一部新手机,开机后发现什么都没有,必须先安装应用、下载数据,才能正常使用。
DeepSeek-R1 的训练过程也类似,如果直接用强化学习(RL)进行训练,那么 AI 一开始就会像一个“什么都不会的孩子”,不断犯错,生成一堆毫无逻辑的答案,甚至可能陷入无意义的循环。
为了解决这个问题,研究人员提出了“冷启动数据”的概念,即在 AI 训练的早期阶段,先用一小批高质量的推理数据微调模型,相当于给 AI 提供一份“入门指南”。
冷启动数据的作用:
- 让 AI 训练更稳定:避免 AI 训练初期陷入“胡乱生成答案”的混乱状态。
- 提升推理质量:让 AI 在强化学习前就具备一定的推理能力,而不是完全从零开始。
- 改善语言表达:减少 AI 生成的语言混杂和重复内容,让推理过程更清晰、可读性更高。
2 DeepSeek-R1 如何构建“冷启动数据”
DeepSeek-R1 采用了一种高质量、可读性强的冷启动数据,主要来源包括:
- 从大型模型生成数据
研究人员使用 few-shot prompting(少样本提示)的方法,让更大的模型生成长链推理(Chain-of-Thought, CoT)数据。例如,可以让 ChatGPT-4 或 DeepSeek-V3 生成详细的数学推理步骤,并筛选其中质量较高的部分。
- 从 DeepSeek-R1-Zero 生成数据
由于 DeepSeek-R1-Zero 具备一定的推理能力,研究人员从中挑选出可读性较好的推理结果,并重新整理后作为冷启动数据。
- 人工筛选和优化
研究团队还会人工审查部分数据,确保格式规范,并优化表达方式,让 AI 生成的推理过程更加直观、清晰。
最终,DeepSeek-R1 使用了数千条冷启动数据来进行初步微调(Supervised Fine-Tuning, SFT),然后再进行强化学习训练。
3 冷启动数据如何改善 AI 推理能力
研究人员对比了 DeepSeek-R1-Zero(无冷启动) 和 DeepSeek-R1(有冷启动) 的推理能力,发现:
- DeepSeek-R1 语言表达更加流畅,不会出现大段重复或混杂语言。
- DeepSeek-R1 的推理链条更完整、更清晰,避免了无意义的循环。
- 训练速度大幅提升,AI 能够更快学会高质量的推理模式。
可以看出,DeepSeek-R1 通过冷启动数据显著提升了数学推理、代码推理等任务的准确率,并且在可读性上远超 DeepSeek-R1-Zero。
4 冷启动数据 vs. 强化学习:哪种更重要
冷启动数据和强化学习各有优劣,二者的结合才是最佳方案:
- 只有强化学习(RL) → AI 可能会生成大量无意义的推理结果,难以理解。
- 只有冷启动数据(SFT) → AI 只能模仿人类提供的答案,而不会自主探索新方法。
- 冷启动 + 强化学习 → AI 既能学到基本推理规则,又能不断优化自己的推理策略。
DeepSeek-R1 采用 “先冷启动、后强化学习” 的策略,让 AI 既能学会基础知识,又能通过强化学习不断进化。这种方法被证明比单独使用 RL 或 SFT 更有效。
5 冷启动数据如何影响 AI 在不同任务上的表现
DeepSeek-R1 经过冷启动微调后,在多个任务上的表现均有显著提升:
- 数学推理(如 AIME 2024、MATH-500):生成的推理链更清晰,减少了计算错误。
- 代码推理(如 Codeforces):代码逻辑更加合理,减少了“胡乱拼凑代码”的情况。
- 复杂问答(如 GPQA Diamond):AI 能更准确地理解长文本问题,并给出更完整的答案。
- 日常对话(如 SimpleQA):AI 的回答更加流畅,不会出现拼凑、重复或语言混杂的问题。
值得注意的是,DeepSeek-R1 的冷启动数据并不是一次性构建的,而是一个持续优化的过程:
- 研究人员会不断调整数据质量,筛选更有助于推理的样本。
- AI 训练过程中产生的新数据也会被筛选出来,作为新的冷启动数据,不断改进模型。
6 未来优化方向
技术报告中提到了一点,尽管冷启动数据大幅提升了 DeepSeek-R1 的推理能力,但仍然有一些改进空间:
- 多语言支持:目前 DeepSeek-R1 主要优化了中英文推理能力,但在其他语言上的表现仍有待提高。
- 更丰富的数据类型:目前的冷启动数据主要针对数学、代码等逻辑推理任务,未来可以扩展到金融、法律、医学等专业领域。
- 自动化数据优化:目前的冷启动数据仍然需要一定的人工筛选,未来可以通过 AI 自动优化数据质量,提高训练效率。
7 一点总结
- 冷启动数据 是 DeepSeek-R1 相比 DeepSeek-R1-Zero 最大的优化点之一。
- 先用冷启动数据进行微调,再用强化学习优化推理能力,比单独使用 RL 或 SFT 更有效。
- 实验结果表明,冷启动数据使 AI 推理能力更强、训练更稳定、表达更清晰,尤其在数学、代码等任务上大幅提升性能。
- 未来方向:优化多语言支持、拓展数据类型、自动化优化数据质量,使 AI 推理能力更进一步。