【DeepSeek-R1背后的技术】系列七:冷启动

【DeepSeek-R1背后的技术】系列博文:
第1篇:混合专家模型(MoE)
第2篇:大模型知识蒸馏(Knowledge Distillation)
第3篇:强化学习(Reinforcement Learning, RL)
第4篇:本地部署DeepSeek,断网也能畅聊!
第5篇:DeepSeek-R1微调指南
第6篇:思维链(CoT)
第7篇:冷启动
第8篇:位置编码介绍(绝对位置编码、RoPE、ALiBi、YaRN)
第9篇:MLA(Multi-Head Latent Attention,多头潜在注意力)
第10篇:PEFT(参数高效微调——Adapter、Prefix Tuning、LoRA)
第11篇:RAG原理介绍和本地部署(DeepSeek+RAGFlow构建个人知识库)
第12篇:分词算法Tokenizer(WordPiece,Byte-Pair Encoding (BPE),Byte-level BPE(BBPE))
第13篇:归一化方式介绍(BatchNorm, LayerNorm, Instance Norm 和 GroupNorm)
第14篇:MoE源码分析(腾讯Hunyuan大模型介绍)

从技术报告中,我们可以看到DeepSeek-R1需要先冷启动,然后再通过GRPO强化学习去训练。

那么,DeepSeek-R1为什么需要冷启动?

1 什么是“冷启动数据”?

在 AI 训练中,“冷启动”(Cold Start) 这个概念类似于刚买了一部新手机,开机后发现什么都没有,必须先安装应用、下载数据,才能正常使用。

DeepSeek-R1 的训练过程也类似,如果直接用强化学习(RL)进行训练,那么 AI 一开始就会像一个“什么都不会的孩子”,不断犯错,生成一堆毫无逻辑的答案,甚至可能陷入无意义的循环。

为了解决这个问题,研究人员提出了“冷启动数据”的概念,即在 AI 训练的早期阶段,先用一小批高质量的推理数据微调模型,相当于给 AI 提供一份“入门指南”。

冷启动数据的作用:

  • 让 AI 训练更稳定:避免 AI 训练初期陷入“胡乱生成答案”的混乱状态。
  • 提升推理质量:让 AI 在强化学习前就具备一定的推理能力,而不是完全从零开始。
  • 改善语言表达:减少 AI 生成的语言混杂和重复内容,让推理过程更清晰、可读性更高。

2 DeepSeek-R1 如何构建“冷启动数据”

DeepSeek-R1 采用了一种高质量、可读性强的冷启动数据,主要来源包括:

  1. 从大型模型生成数据

研究人员使用 few-shot prompting(少样本提示)的方法,让更大的模型生成长链推理(Chain-of-Thought, CoT)数据。例如,可以让 ChatGPT-4 或 DeepSeek-V3 生成详细的数学推理步骤,并筛选其中质量较高的部分。

  1. 从 DeepSeek-R1-Zero 生成数据

由于 DeepSeek-R1-Zero 具备一定的推理能力,研究人员从中挑选出可读性较好的推理结果,并重新整理后作为冷启动数据。

  1. 人工筛选和优化

研究团队还会人工审查部分数据,确保格式规范,并优化表达方式,让 AI 生成的推理过程更加直观、清晰。
最终,DeepSeek-R1 使用了数千条冷启动数据来进行初步微调(Supervised Fine-Tuning, SFT),然后再进行强化学习训练。

3 冷启动数据如何改善 AI 推理能力

研究人员对比了 DeepSeek-R1-Zero(无冷启动) 和 DeepSeek-R1(有冷启动) 的推理能力,发现:

  • DeepSeek-R1 语言表达更加流畅,不会出现大段重复或混杂语言。
  • DeepSeek-R1 的推理链条更完整、更清晰,避免了无意义的循环。
  • 训练速度大幅提升,AI 能够更快学会高质量的推理模式。

可以看出,DeepSeek-R1 通过冷启动数据显著提升了数学推理、代码推理等任务的准确率,并且在可读性上远超 DeepSeek-R1-Zero。

4 冷启动数据 vs. 强化学习:哪种更重要

冷启动数据和强化学习各有优劣,二者的结合才是最佳方案:

  • 只有强化学习(RL) → AI 可能会生成大量无意义的推理结果,难以理解。
  • 只有冷启动数据(SFT) → AI 只能模仿人类提供的答案,而不会自主探索新方法。
  • 冷启动 + 强化学习 → AI 既能学到基本推理规则,又能不断优化自己的推理策略。

DeepSeek-R1 采用 “先冷启动、后强化学习” 的策略,让 AI 既能学会基础知识,又能通过强化学习不断进化。这种方法被证明比单独使用 RL 或 SFT 更有效。

5 冷启动数据如何影响 AI 在不同任务上的表现

DeepSeek-R1 经过冷启动微调后,在多个任务上的表现均有显著提升:

  • 数学推理(如 AIME 2024、MATH-500):生成的推理链更清晰,减少了计算错误。
  • 代码推理(如 Codeforces):代码逻辑更加合理,减少了“胡乱拼凑代码”的情况。
  • 复杂问答(如 GPQA Diamond):AI 能更准确地理解长文本问题,并给出更完整的答案。
  • 日常对话(如 SimpleQA):AI 的回答更加流畅,不会出现拼凑、重复或语言混杂的问题。

值得注意的是,DeepSeek-R1 的冷启动数据并不是一次性构建的,而是一个持续优化的过程:

  • 研究人员会不断调整数据质量,筛选更有助于推理的样本。
  • AI 训练过程中产生的新数据也会被筛选出来,作为新的冷启动数据,不断改进模型。

6 未来优化方向

技术报告中提到了一点,尽管冷启动数据大幅提升了 DeepSeek-R1 的推理能力,但仍然有一些改进空间:

  • 多语言支持:目前 DeepSeek-R1 主要优化了中英文推理能力,但在其他语言上的表现仍有待提高。
  • 更丰富的数据类型:目前的冷启动数据主要针对数学、代码等逻辑推理任务,未来可以扩展到金融、法律、医学等专业领域。
  • 自动化数据优化:目前的冷启动数据仍然需要一定的人工筛选,未来可以通过 AI 自动优化数据质量,提高训练效率。

7 一点总结

  • 冷启动数据 是 DeepSeek-R1 相比 DeepSeek-R1-Zero 最大的优化点之一。
  • 先用冷启动数据进行微调,再用强化学习优化推理能力,比单独使用 RL 或 SFT 更有效。
  • 实验结果表明,冷启动数据使 AI 推理能力更强、训练更稳定、表达更清晰,尤其在数学、代码等任务上大幅提升性能。
  • 未来方向:优化多语言支持、拓展数据类型、自动化优化数据质量,使 AI 推理能力更进一步。
冷启动描述了在线广告平台中普遍公认的挑战:由于数据有限,机器学习系统无法准确估计新广告的点击率 (CTR) 和转化率 (CVR),进而无法对这些新广告进行有效定价或与平台用户匹配。 新广告冷启动不成功会促使广告主离开平台,降低广告市场的厚度。 为了解决在线广告平台的冷启动问题,我们构建了一个数据驱动的优化模型,以捕捉短期收入和广告的长期市场厚度之间的基本权衡。 基于对偶理论和老虎机算法,我们开发了带有可证明后悔上限的 O(T^{2/3}K^{1/3}(logT)^{1/3) 的影子竞价学习 (SBL) 算法}d^{1/2}),其中 K 是广告数量,d 是底层机器学习预言机用于预测 CTR 和 CVR 的有效维度。 此外,我们提出的算法可以在实践中直接实现,对真实的在线广告系统进行最少的调整。 为了证明我们的冷启动算法的实用性,我们与一个大型在线视频共享平台合作,在线实现了该算法。 在这种情况下,传统的单边实验会导致估计有很大偏差。 因此,我们进行了一项新的双边随机现场实验,并设计了无偏估计来检查 SBL 算法的有效性。 我们的实验结果表明,所提出的算法可以使冷启动成功率大幅提高 61.62%,而短期收益仅降低 0.717%,从而使总目标值提高 0.147%。 我们的研究弥合了强盗算法理论与广告冷启动实践之间的差距,并突出了精心设计的冷启动算法对在线广告平台的重要价值。
### 解决 `ollama rm` 命令中的 'model deepseek-r1:32b not found' 错误 当执行 `ollama rm` 命令并收到 `'model deepseek-r1:32b not found'` 的错误提示时,这通常意味着尝试移除的模型并未加载到当前环境中。为了有效处理这一情况: #### 验证已加载模型列表 首先确认目标模型确实存在于环境之中。可以利用 `/show` 或者特定于管理工具内的命令来查看所有可用或已经加载的模型。 ```bash /show models ``` 此操作有助于验证 `deepseek-r1:32b` 是否被正确安装和识别[^4]。 #### 检查路径与命名准确性 确保输入的模型名称完全无误,包括大小写敏感性和版本号的一致性。任何细微差异都可能导致系统无法找到对应的模型文件。 #### 使用绝对路径卸载 如果相对路径未能成功定位模型,则考虑采用完整的存储位置路径来进行删除动作。例如: ```bash ollama rm /full/path/to/deepseek-r1:32b ``` 通过提供更精确的位置信息给命令行工具,增加删除成功的可能性。 #### 更新索引或缓存清理 某些情况下,本地索引可能未及时更新从而影响到了新加入资源的有效检索。此时可探索是否有刷新索引或是清除临时数据的相关选项以辅助解决问题。 #### 寻求官方文档支持 查阅官方提供的帮助手册或在线社区论坛获取更多关于该问题的具体指导和支持。官方渠道往往能给出最权威有效的解决方案建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值