auto_sarima fourier分量

前言

auto_sarima使用非常简单, 只需输入周期M即可; 比如上一篇提到的kaggle商品预测比赛, 每年的圣诞节(12月)会有一波大的销量上涨;此时可以设置周期m=12(即12个月一个周期);

model = auto_arima(train, seasonal=True, m=12)

在这里插入图片描述

问题:

在我的场景,需要使用m=168为周期;
由于m最后是作为幂次方进行运算的, 所以计算会非常慢, 而且效果也不好;

解决

使用fourier分量;

pipe = pipeline.Pipeline([
    ("fourier", ppc.FourierFeaturizer(m=168, k=18)),
    ("arima", arima.AutoARIMA(stepwise=True, trace=1, error_action="ignore",
                              seasonal=False,  # because we use Fourier
                              suppress_warnings=True))
])

参考链接如下:
• Helpful for long seasonal periods (large m) where seasonal=True seems to take a very long time to fit a model.

来自 https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.preprocessing.FourierFeaturizer.html#pmdarima.preprocessing.FourierFeaturizer

  • Pipelines with auto_arima

来自 https://alkaline-ml.com/pmdarima/auto_examples/example_pipeline.html#sphx-glr-auto-examples-example-pipeline-py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值