Transformer 的优点和关键优势

Transformer是2017年提出的seq2seq模型,没有RNN或CNN结构,依赖自注意力进行全局依赖建模,解决了RNN并行计算难题和CNN的距离依赖问题,具有可解释性优势,并使用Position Embedding表示序列位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文不是一篇全文解读,仅谈一谈该模型的关键优势,了解我们在构建深度学习模型时使用 Transformer 模型的适用条件是什么。

什么是 Transformer?

Transformer 是 Google 的研究者于 2017 年在《Attention Is All You Need》一文中提出的一种用于 seq2seq 任务的模型,它没有 RNN 的循环结构或 CNN 的卷积结构,在机器翻译等任务中取得了一定提升。

动机

RNN、LSTM 和 GRU 网络已在序列模型、语言建模、机器翻译等应用中取得不错的效果。循环结构 (recurrent) 的语言模型和编码器 - 解码器体系结构取得了不错的进展。

但是,RNN 固有的顺序属性阻碍了训练样本间的并行化,对于长序列,内存限制将阻碍对训练样本的批量处理。

注意力机制 (attention) 已经成为各类任务中序列建模 (sequencem modeling) 和转导模型 (transduction model) 中的组成部分,允许对输入输出序列的依赖项进行建模,而无需考虑它们在序列中的距离。但之前的注意力机制都与 RNN 结合使用。

本文提出的 Transformer,是一种避免循环 (recurrent) 的模型结构,完全依赖于注意力机制对输入输出的全局依赖关系进行建模。因为对依赖的建模完全依赖于注意力机制,Transformer 使用的注意力机制被称为自注意力(self-attention)。

Transformer 为什么使用了自注意力

探讨使用自注意力层构建 Transformer 的原因,就是将自注意力层与循环层或卷积层做比较。

Transformer具有以下几个优势: 1. **并行计算**:相比于循环神经网络(RNN)长短期记忆网络(LSTM),Transformer可以并行计算,因为它不需要按顺序处理输入序列。这使得Transformer在处理长序列时更加高效。 2. **长距离依赖建模**:由于Transformer使用了自注意力机制,它能够在建模输入输出之间的长距离依赖关系时表现出色。这意味着Transformer可以更好地捕捉序列中不同位置之间的关系,从而提高了模型的性能。 3. **可解释性**:Transformer中的自注意力机制为每个位置的输出分配了一个权重,这使得我们可以直观地观察模型在处理序列数据时关注的区域。这种可解释性使得我们能够更好地理解模型的决策过程推理过程。 总的来说,Transformer在处理序列数据时具有并行计算、长距离依赖建模可解释性等优势,已经成为处理序列数据的主流模型。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* [Transformer相比RNNLSTM有哪些优势?](https://blog.csdn.net/a871923942/article/details/131033569)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Transformer优点关键优势](https://blog.csdn.net/sinat_26811377/article/details/107403948)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值