多模态大模型1、概览与前置任务

1、tokenizer原理与算法

  • tokenizer原理与算法:BPE,ByteBPE, wordpiece,unilm,sentence-piece

  • tokenizer训练:sentence-piece

https://blog.csdn.net/fj1024/article/details/139737169大语言模型之十 SentencePiece-CSDN博客

2、position encoding方案

https://zhuanlan.zhihu.com/p/654277808大模型中的位置编码ALiBi,RoPE的总结和实现_alibi位置编码-CSDN博客

3、注意力机制与transformer架构

典型的transformer架构

  • decoder-only

  • encoder-only

  • encoder-decoder

Transformer 大模型详解——transformer模型_transformer大模型-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值