Python中的图像处理(第四章)Python图像处理入门(1)
前言
随着人工智能研究的不断兴起,Python的应用也在不断上升,由于Python语言的简洁性、易读性以及可扩展性,特别是在开源工具和深度学习方向中各种神经网络的应用,使得Python已经成为最受欢迎的程序设计语言之一。由于完全开源,加上简单易学、易读、易维护、以及其可移植性、解释性、可扩展性、可扩充性、可嵌入性:丰富的库等等,自己在学习与工作中也时常接触到Python,这个系列文章的话主要就是介绍一些在Python中常用一些例程进行仿真演示!
本系列文章主要参考杨秀章老师分享的代码资源,杨老师博客主页是Eastmount,杨老师兴趣广泛,不愧是令人膜拜的大佬,他过成了我理想中的样子,希望以后有机会可以向他请教学习交流。
因为自己是做图像语音出身的,所以首先来实现一个简单的图片读取与处理的例程,OpenCV已经在Python上进行了多个版本的维护,所以相比VS,Python的环境配置不会那么繁琐,缺库直接安装就可以。本系列文章例程都是基于Python3.8的环境下进行,所以大家在进行借鉴的时候建议最好在3.8.0版本以上进行仿真。本文继续来对本书第四章的5个例程进行介绍。
一. Python准备
如何确定自己安装好了python
win+R输入cmd进入命令行程序
点击“确定”
输入:python,回车
看到Python相关的版本信息,说明Python安装成功。
二. Python仿真
(1)新建一个chapter04_01.py文件,输入以下代码,图片也放在与.py文件同级文件夹下
# -*- coding:utf-8 -*-
# By: Eastmount CSDN 2021-01-26
import cv2
#读取图片
img = cv2.imread("Lena.png")
#显示图像
cv2.imshow("Demo", img)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
保存.py文件
输入eixt()退出python,输入命令行进入工程文件目录
输入以下命令,跑起工程
python chapter04_01.py
没有报错,直接弹出图片,运行成功!
(2)新建一个chapter04_02.py文件,输入以下代码,图片也放在与.py文件同级文件夹下
# -*- coding:utf-8 -*-
# By: Eastmount CSDN 2021-01-26
import cv2
#读取图片
img = cv2.imread("Lena.png")
#读取像素
test = img[88,142]
print("读取的像素值:", test)
#修改像素
img[88,142] = [255, 255, 255]
print("修改后的像素值:", test)
#分别获取BGR通道像素
blue = img[88,142,0]
print("蓝色分量", blue)
green = img[88,142,1]
print("绿色分量", green)
red = img[88,142,2]
print("红色分量", red)
#显示图像
cv2.imshow("Demo", img)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
保存.py文件输入以下命令,跑起工程
python chapter04_02.py
没有报错,直接弹出图片,运行成功!
(3)新建一个chapter04_03.py文件,输入以下代码,图片也放在与.py文件同级文件夹下
# -*- coding:utf-8 -*-
# By: Eastmount CSDN 2021-01-26
import cv2
#读取图片
img = cv2.imread("Lena.png")
#该区域设置为白色
img[100:200, 150:250] = [255,255,255]
#显示图像
cv2.imshow("Demo", img)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
保存.py文件输入以下命令,跑起工程
python chapter04_03.py
没有报错,直接弹出图片,运行成功!
(4)新建一个chapter04_04.py文件,输入以下代码,图片也放在与.py文件同级文件夹下
# -*- coding:utf-8 -*-
# By: Eastmount CSDN 2021-01-26
import cv2
import numpy
#读取图片
img = cv2.imread("Lena.png")
print(type(img))
#Numpy读取像素
print(img.item(78, 100, 0))
print(img.item(78, 100, 1))
print(img.item(78, 100, 2))
#Numpy修改像素
img.itemset((78, 100, 0), 100)
img.itemset((78, 100, 1), 100)
img.itemset((78, 100, 2), 100)
print(img.item(78, 100, 0))
print(img.item(78, 100, 1))
print(img.item(78, 100, 2))
保存.py文件输入以下命令,跑起工程
python chapter04_04.py
没有报错,打印像素值,运行成功!
(5)新建一个chapter04_05.py文件,输入以下代码,图片也放在与.py文件同级文件夹下
# -*- coding:utf-8 -*-
# By: Eastmount CSDN 2021-01-26
import cv2
import numpy as np
#读取图片
img = cv2.imread("Lena.png")
#创建空图像
emptyImage = np.zeros(img.shape, np.uint8)
#复制图像
emptyImage2 = img.copy()
#显示图像
cv2.imshow("Demo1", img)
cv2.imshow("Demo2", emptyImage)
cv2.imshow("Demo3", emptyImage2)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
保存.py文件输入以下命令,跑起工程
python chapter04_05.py
没有报错,直接弹出图片,运行成功!
三. 小结
本章开始的例程都是在Python中调用OpenCV库读取图片,并对图像进行简单处理,比如读取像素值,给某区域像素复制,改变图像像素值,复制图像等等,下一篇文章将继续介绍第四章节的仿真实例,感兴趣的还是建议去阅读原书深入学习理解。每天学一个Python小知识,大家一起来学习进步阿!
本系列示例主要参考杨老师GitHub源码,安利一下地址:ImageProcessing-Python(喜欢记得给个star哈!)