GAMES101——Leature 03: Transformation

0 回顾上节课的内容

  • 向量
  • 点乘
  • 叉乘
  • 矩阵

1 为什么要学习transform变换?

  • 模型变换 model
  • 视图变换 view

2 2D transformations

使用矩阵表示转换

均匀缩放、非均匀缩放

反射变换

在这里插入图片描述

切变

在这里插入图片描述

旋转

  • 默认围绕坐标原点,逆时针旋转
    在这里插入图片描述

以上的几种变换都是线性变换。也就是以上的变换都可以写成一个矩阵 x 向量的形式。x' = Mx

3 齐次坐标

在进行平移变换的时候,变换不能以单个的矩阵形式表示,所以此时的变换不再是线性变换,而我们也不想让平移成为特例,因此想用齐次坐标将所有的变换统一地表示出来。

解决方式:通过增加一个数,将平移变成“矩阵 x 向量”的形式。用0和1来区分点和向量。(向量具有平移不变性)

  • 2D 点 = ( x , y , 1 ) T (x, y, 1)^T (x,y,1)T
  • 2D向量 = ( x , y , 0 ) T (x, y, 0)^T (x,y,0)T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值