0 回顾上节课的内容
- 向量
- 点乘
- 叉乘
- 矩阵
1 为什么要学习transform变换?
- 模型变换 model
- 视图变换 view
2 2D transformations
使用矩阵表示转换
均匀缩放、非均匀缩放
反射变换
切变
旋转
- 默认围绕坐标原点,逆时针旋转
以上的几种变换都是线性变换。也就是以上的变换都可以写成一个矩阵 x 向量的形式。
x' = Mx
3 齐次坐标
在进行平移变换的时候,变换不能以单个的矩阵形式表示,所以此时的变换不再是线性变换,而我们也不想让平移成为特例,因此想用齐次坐标将所有的变换统一地表示出来。
解决方式:通过增加一个数,将平移变成“矩阵 x 向量”的形式。用0和1来区分点和向量。(向量具有平移不变性)
- 2D 点 = ( x , y , 1 ) T (x, y, 1)^T (x,y,1)T
- 2D向量 = ( x , y , 0 ) T (x, y, 0)^T (x,y,0)T