0.
视频资料:吴恩达机器学习课程
https://www.coursera.org/learn/machine-learning/lecture/OAOhO/non-linear-hypotheses
1.神经网络初步
神经网络十分适用于解决复杂的非线性分类问题,因为前面所学的逻辑回归在解决非线性问题上愈发复杂。
神经网络的历史此处略过不提,他主要是要模拟大脑的功能,并从简单的一个神经元开始分析。
①对于一个简单的模型来说,第一个标❤部分
神经元接收来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将于神经元的阈值进行比较,然后通过激活函数(activation function)处理以产生神经元的输出。
理想的激活函数是阶跃函数,可以将输入值映射为输出值“0”或“1”,但由于其不连续不光滑,常用前面所讲的sigmoid函数(S型函数),把可能在较大范围内变化的输入值挤压到(0,1)输出值范围内。
②把许多个这样的神经元按一定层次结构连接起来,就得到了神经网络,第二个标❤部分就是一个多层的神经网络。
在这个复杂的例子中,其式子列为:
接下来,我们需要对这个式子进行向量化实现,可以进行高效的计算。
注意:z是θ与x或a的加权线性组合(注意下角标为0的a与x),再通过函数作用得到a
2.神经网络的简单示例