机器学习理论与实践-05-神经网络(1)

0.

视频资料:吴恩达机器学习课程

https://www.coursera.org/learn/machine-learning/lecture/OAOhO/non-linear-hypotheses

 

1.神经网络初步

神经网络十分适用于解决复杂的非线性分类问题,因为前面所学的逻辑回归在解决非线性问题上愈发复杂。

神经网络的历史此处略过不提,他主要是要模拟大脑的功能,并从简单的一个神经元开始分析。

①对于一个简单的模型来说,第一个标❤部分

神经元接收来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将于神经元的阈值进行比较,然后通过激活函数(activation function)处理以产生神经元的输出。

理想的激活函数是阶跃函数,可以将输入值映射为输出值“0”或“1”,但由于其不连续不光滑,常用前面所讲的sigmoid函数(S型函数),把可能在较大范围内变化的输入值挤压到(0,1)输出值范围内。

②把许多个这样的神经元按一定层次结构连接起来,就得到了神经网络,第二个标❤部分就是一个多层的神经网络。

在这个复杂的例子中,其式子列为:

接下来,我们需要对这个式子进行向量化实现,可以进行高效的计算。

注意:z是θ与x或a的加权线性组合(注意下角标为0的a与x),再通过函数作用得到a

 

2.神经网络的简单示例

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值