拉普拉斯------拉普拉斯算子

拉普拉斯算子是数学中的一个重要概念,它涉及到梯度、散度等运算。梯度描述了函数在多维空间的变化方向,而散度则用于描述通量,即单位时间内流过的量。拉普拉斯算子是梯度的散度,形式为二阶偏导数的和,具有旋转不变性。在图像处理中,拉普拉斯算子用于边缘识别,通过计算像素邻域的差值来突出色彩变化大的区域。
摘要由CSDN通过智能技术生成

拉普拉斯------拉普拉斯算子

梯度

梯度描述了多维函数的变化方向,也就是对应该方向函数的变化率(导数来体现)最大,也就是对应方向的方向导数最大,所以其实际是一个有大小有方向的向量。
偏导数描述了某个维度上(对应一个坐标轴上)的函数的变化趋势,这些偏导数构成基本量来描述每个维度的分量,各个维度的分量组合为一个向量也就能描述函数在多维空间的变化趋势。
g r a d f ( x , y ) = ( ∂ f ( x , y ) ∂ x , ∂ f ( x , y ) ∂ y ) = f x ( x , y ) i + f y ( x , y ) j gradf(x,y)=(\frac{\partial f(x,y)}{\partial x},\frac{\partial f(x,y)}{\partial y})=f_x(x,y)i+f_y(x,y)j gradf(x,y)=(xf(x,y),yf(x,y))=fx(x,y)i+fy(x,y)j (二元,多元同理)
这里的 f x ( x , y ) , f y ( x , y ) f_x(x,y),f_y(x,y) fx(x,y),fy(x,y)为数量大小, i i i j j j是数轴方向(基),一起描述了其向量的大小与方向。
梯度操作的对象是无方向的常量(分布),最终产生的是一个有方向的矢量。

散度

散度是用来描述通量的,而通量是描述单位时间流过(方向与对应面垂直)某个面的量(该量是矢量),由其定义可以得到通量的表示 ∬ F → ⋅ n → d s \iint\overrightarrow{F} \cdot \overrightarrow{n}ds F n ds,其中 F → \overrightarrow{F} F 为矢量场,对应的 n → \overrightarrow{n} n 是积分 d s ds ds的法向量,表示的是量的垂直通过,对于封闭面的通量就有这样的形式 ∯ F → ⋅ n → d s \oiint\overrightarrow{F} \cdot \overrightarrow{n}ds F n ds。散度的描述是关于封闭曲面的,用封闭曲面的总通量平均到其围成的体积中 1 V ∯ F → ⋅ n → d s \frac{1}{V}\oiint\overrightarrow{F} \cdot \overrightarrow{n}ds V1 F n ds,( V V V是对应曲面所围成的体积),得到一个平均的量来描述在这个区域中每个小的区域对通量的贡献,但是这个描述是描述总的趋势(即量是涌入该封闭曲面,还是向外涌出),并不能描述切实的每个点的具体情况,于是对这个区域进行取极限令其趋于无穷小的一点,就可以得到该点处散度的情况 lim ⁡ V − > 0 1 V ∯ F → ⋅ n → d s \lim\limits_{V->0}\frac{1}{V}\oiint\overrightarrow{F} \cdot \overrightarrow{n}ds V>0limV1 F n ds
然而这个新式的描述并不能体现其全部的含义,对于向量场 F → \overrightarrow{F} F 可以变换成多个维度基的形式,假设是一个三维的有 F → = F x i + F y j + F z k \overrightarrow{F}=F_xi+F_yj+F_zk F =Fxi+Fyj+Fzk,其中的i,j,k为三个坐标轴的方向,于是原先的表示可以变化为 lim ⁡ V − > 0 1 V ∯ F x d y d z + F y d x d z + F z d x d y \lim\limits_{V->0}\frac{1}{V}\oiint F_xdydz+F_ydxdz+F_zdxdy V>0limV1 Fxdydz+Fydxdz+Fzdxdy,在直角坐标系中 V V V趋于无穷小,于是我们可以以 d x d y d z dxdydz dxdydz来描述对应的体积 V V V,于是有散度为 1 d x d y d z ( ( ( F x + d F x ) − F x ) d y d z + ( ( F y + d F y ) − F y ) d x d z + ( ( F z + d F z ) − F z ) d x d y ) \frac{1}{dxdydz}(((F_x+dF_x)-F_x)dydz+((F_y+dF_y)-F_y)dxdz+((F_z+dF_z)-F_z)dxdy) dxdydz1(((Fx+dFx)Fx)dydz+((Fy+dFy)Fy)dxdz+((Fz+dFz)Fz)dxdy)(在各个坐标方向用微分表示)
于是有散度 d i v = 1 d x d y d z ( d F x d y d z + d F y d x d z + d F z d x d y ) = d F x d x + d F y d y + d F z d z div=\frac{1}{dxdydz}(dF_xdydz+dF_ydxdz+dF_zdxdy)=\frac{dF_x}{dx}+\frac{dF_y}{dy}+\frac{dF_z}{dz} div=dxdydz1(dFxdydz+dFydxdz+dFzdxdy)=dxdF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值