文章标题
Auto-Metric Graph Neural Network Based on a Meta-learning Strategy for the Diagnosis of Alzheimer’s disease
基于元学习策略的自度量图神经网络在阿尔茨海默病诊断中的应用
文章信息:
Xiaofan Song, Mingyi Mao, Xiaohua Qian,IEEE Journal of Biomedical and Health Informatics, pp. 1-11, 2021
DOI: 10.1109/JBHI.2021.3053568
发表于:
IEEE生物医学与健康信息学杂志
https://ieeexplore.ieee.org/document/9335007
摘要
阿尔茨海默病(AD)是最常见的认知障碍。近年来,许多计算机辅助诊断技术被提出用于AD的诊断和进展预测。其中,图神经网络(graph neural network, GNNs)由于能够有效地融合多模态特征并对样本之间的相关性进行建模而受到广泛关注。然而,许多用于节点分类的GNN使用一个完整的数据集来构建一个大型的固定图结构,无法进行独立测试。为了克服这一局限性,同时保持GNN的优势,我们提出了一种用于AD诊断的自度量GNN (AMGNN)模型。首先,引入一种基于度量的元学习策略,通过多个节点分类任务实现独立测试的归纳学习。在元任务中,较小的图(small graph)有助于使模型对样本量(sample size)不敏感,从而提高小样本量(small sample size)条件下的性能。此外,设计了一个带有概率约束(probability constraint)的AMGNN层来实现节点相似度度量(node similarity metric)学习,有效融合多模态数据。
我们在两个基于TADPOLE dataset数据集的任务上验证了该模型:早期AD诊断和轻度认知障碍(MCI)转换预测。我们的模型在这两个任务上都有出色的表现,准确率分别为94.44%和87.50%,中位数准确率分别为94.19%和86.25%。这些结果表明,我们的模型在保证良好分类性能的同时提高了灵活性,从而促进了基于图的疾病诊断深度学习算法的发展。
1. INTRODUCTION
阿尔茨海默病(AD)是一种慢性神经退行性疾病,随着时间的推移会恶化,是痴呆症和的最常见原因。预计到2050年,全世界患有AD的人数将达到约9100万。根据患者身体状态和认知水平的不同,AD的发展可分为三个阶段:正常控制(NC)、轻度认知损害(MCI)和AD[5]、[6]。先前的研究表明,每年约有10–15%的MCI患者在短期内出现AD症状[7]。因此,MCI患者可进一步分为稳定型MCI (sMCI)和进行性MCI (pMCI)。
在AD的发展过程中,脑损伤是不可逆转的。目前的AD药物只能改善轻度症状患者的认知损害,这些药物只有在疾病早期[8]、[9]使用时才有效。然而,医生很难做出准确的AD诊断。为了排除其他形式的痴呆,他们需要评估患者的综合病史,结合神经影像学检查、实验室检查和精神状态检查[10]。因此,开发可靠的计算机辅助方法有助于尽早准确诊断AD患者的病情。
计算机辅助方法有两种类型的任务**:AD的早期诊断(NC vs. MCI vs. AD)和MCI转换预测(sMCI vs. pMCI)。**对于AD的早期诊断,已有许多基于传统机器学习和深度学习算法的研究。其中一些研究对两类任务进行了分类:AD vs. NC和MCI vs. NC。
对于AD的早期诊断,已有许多基于传统机器学习和深度学习算法的研究。如应用逻辑回归模型探讨了自动磁共振成像(MRI)的方法来区分MCI和AD和NC。采用多核支持向量机(SVM)融合多模态数据进行AD/NC和MCI/NC分类。然而,他们的两类分类方法并没有产生一个准确的诊断疾病的阶段。对NC、MCI和AD的分类更有临床价值。
还有一些关于MCI转换预测的研究,如采用独立成分分析和多元回归模型预测AD转换。使用分层全卷积网络从核磁共振成像MRI信息中自动定位和分类特征。也有研究人员应用3D分离和卷积处理(核磁共振)MRI图像来预测MCI转换。有研究还提出了一种深度卷积自动编码器体系结构,来获取用于MCI转换预测的数据驱动特征等等。然而,如何有效地整合不同的信息(如成像特征和非成像特征,这类多模态特征)一直是学术界被讨论的问题。在这些的基础上作者联想到了图神经网络GNN。这些研究为AD诊断领域做出了重要贡献。
然而,如何有效地整合不同的信息(如成像特征和非成像特征)对于学术界仍然是一个开放的问题。图神经网络(GNN)可以处理复杂的图数据,近年来被引入到疾病诊断的研究中。这种方法在邻域图中设置患者之间的关系,邻域图通常使用风险因素(如年龄、性别和基因)进行链接。图中的节点代表病人,