p-value&FPR以及q-value&FDR

在测序数据中,我们经常能在差异统计表格看到P-value以及FDR值。而在生信数据的分析中,也会经常对P-value进行FDR校正。这么做的目的是什么,FDR校正的原理又是什么呢?
首先我们来看 P-value的定义:在假设检验中,当原假设(H0)为真时,所得到的样本观察结果或更极端结果出现的概率。
如果P-value很小,说明原假设为真时,这个数据甚至更极端的数据出现的概率很小;而当P-value小于一个我们人为预先设定的值α(生物分析中一般取0.05)的时候,与其相信这个小概率事件的发生,我们认为更为合理的选择是拒绝原假设(H0)。

下面引用在网上看到的一个解释,十分简洁易懂。



好了,理解了P-value的概念后,为了方便理解接下来的概

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值