在测序数据中,我们经常能在差异统计表格看到P-value以及FDR值。而在生信数据的分析中,也会经常对P-value进行FDR校正。这么做的目的是什么,FDR校正的原理又是什么呢?
首先我们来看 P-value的定义:在假设检验中,当原假设(H0)为真时,所得到的样本观察结果或更极端结果出现的概率。
如果P-value很小,说明原假设为真时,这个数据甚至更极端的数据出现的概率很小;而当P-value小于一个我们人为预先设定的值α(生物分析中一般取0.05)的时候,与其相信这个小概率事件的发生,我们认为更为合理的选择是拒绝原假设(H0)。
首先我们来看 P-value的定义:在假设检验中,当原假设(H0)为真时,所得到的样本观察结果或更极端结果出现的概率。
如果P-value很小,说明原假设为真时,这个数据甚至更极端的数据出现的概率很小;而当P-value小于一个我们人为预先设定的值α(生物分析中一般取0.05)的时候,与其相信这个小概率事件的发生,我们认为更为合理的选择是拒绝原假设(H0)。
下面引用在网上看到的一个解释,十分简洁易懂。
好了,理解了P-value的概念后,为了方便理解接下来的概