文章目录
Deepfakes Detection with Automatic Face Weighting
会议/期刊:CVPRW 2020
作者:
背景
被篡改和操纵的多媒体越来越多地存在,并通过社交媒体平台广泛传播。【至今仍是如此】
泛化性不足
当前的DeepFake视频是通过将合成的面部区域拼接到原始视频帧上而创建的。这种拼接操作可能会留下伪影,稍后在估计3D头部姿势时可以检测到这些伪影。【部分】
points
一种基于卷积神经网络(CNN)和递归神经网络(RNN)的方法,该方法从视频中的人脸中提取视觉和时间特征,以准确检测操纵。【一种新的模型架构】【结合CNN和RNN】
Deepfake检测挑战数据集
Deepfake Detection Challenge(DFDC)[3]数据集总共包