【AFW+GRU(CNN+RNN)】Deepfakes Detection with Automatic Face Weighting

Deepfakes Detection with Automatic Face Weighting

会议/期刊:CVPRW 2020
作者:
在这里插入图片描述

背景

被篡改和操纵的多媒体越来越多地存在,并通过社交媒体平台广泛传播。【至今仍是如此】

泛化性不足

当前的DeepFake视频是通过将合成的面部区域拼接到原始视频帧上而创建的。这种拼接操作可能会留下伪影,稍后在估计3D头部姿势时可以检测到这些伪影。【部分】

points

一种基于卷积神经网络(CNN)和递归神经网络(RNN)的方法,该方法从视频中的人脸中提取视觉和时间特征,以准确检测操纵。【一种新的模型架构】【结合CNN和RNN】

Deepfake检测挑战数据集

Deepfake Detection Challenge(DFDC)[3]数据集总共包

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值