B.1【智能标注】:基于 hugging face 预训练模型的实体识别方案:生成doccano要求json格式

本文介绍了如何利用hugging face的预训练模型进行智能标注,并详细阐述了doccano平台的标注格式要求,包括长文本、短文本和含标注精灵格式的转换。同时,讨论了提高标注质量的方法,如人工复核和删除无效标注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 如何在Hugging Face平台上进行在线模型训练 为了实现在Hugging Face平台上的在线模型训练,用户可以通过访问Hugging Face的Transformers库以及利用其提供的API和服务来完成这一目标。具体而言,在线训练涉及到创建项目、准备数据集、配置环境和启动训练作业等一系列操作。 #### 创建新项目并设置环境 首先登录到[Hugging Face](https://huggingface.co/)网站,并进入Spaces页面以创建一个新的空间用于托管即将开展的工作。之后可以选择基于云端实例运行Jupyter Notebook或其他IDE来进行开发活动[^1]。 #### 准备数据集 对于大多数机器学习任务来说,高质量的数据集至关重要。可以在Hugging Face Datasets库中查找公开可用的数据集,也可以上传自有数据文件至个人账户下的特定仓库内以便后续处理。确保所选数据格式适合预期的任务需求,比如文本分类可能需要CSV或JSON形式标注过的语料库[^2]。 #### 编写训练脚本 编写Python脚本来定义模型架构、优化器参数以及其他必要的超参设定。这里推荐采用PyTorch框架配合Trainer类实现自动化流程管理;当然也支持其他主流深度学习引擎如TensorFlow等。下面给出一段简单的例子展示如何初始化一个BERT模型并指定微调过程中的关键选项: ```python from transformers import BertForSequenceClassification, Trainer, TrainingArguments model = BertForSequenceClassification.from_pretrained('bert-uncased') training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset ) ``` #### 启动远程执行 当一切就绪后,只需点击“Train”按钮即可触发后台服务器资源分配进而正式开启训练进程。期间能够实时监控进度条变化情况并通过日志查看潜在错误提示信息。一旦结束则会自动生成评估报告供下载保存。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值