知识图谱专栏简介:数据增强,智能标注,文本信息抽取(实体关系事件抽取)、知识融合算法方案、知识推理、模型优化、模型压缩技术等

该知识图谱专栏涵盖了从基础概念到实战应用的全面内容,包括知识融合技术方案、知识推理算法、数据增强与智能标注在文本信息抽取中的应用,以及模型优化和压缩技术。通过实例讲解了实体关系事件抽取,提供了宝贵的资源和码源,助力NLP领域的科研和业务落地。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识图谱专栏简介:数据增强,智能标注,文本信息抽取(实体关系事件抽取)、知识融合算法方案、知识推理、模型优化、模型压缩技术等
在这里插入图片描述


在这里插入图片描述

专栏链接:NLP知识图谱相关技术业务落地方案和码源


NLP知识图谱相关技术业务落地方案和码源,本专栏会持续更新包含知识图谱(知识融合、知识推理等)、NLP业务落地方案以及码源。
同时我也会整理总结出有价值的资料省去你大把时间,快速获取有价值信息进行科研or业务落地。

1.整体目录如下

简单展示一下目录流程,详细内容的xmind见:
在这里插入图片描述

在这里插入图片描述

2.专栏文章:

2.1 知识图谱基础概念、开发流程以及落地策略

0.基于知识图谱的知识建模详细方案

0.知识图谱基础概念、开发流程以及落地策略

0.技术知识介绍:工业级知识图谱方法与实践-解密知识谱的通用可迁移构建方法,以阿里巴巴大规模知识图谱核心技术为介绍

在这里插入图片描述

在这里插入图片描述

2.2 知识融合技术方案

1.特定领域知识图谱知识融合方案(实体对齐):优酷领域知识图谱为例

1.特定领域知识图谱知识融合方案(实体对齐):文娱知识图谱构建之人物实体对齐

1.特定领域知识图谱知识融合方案(实体对齐):商品知识图谱技术实战

1.特定领域知识图谱知识融合方案(实体对齐):基于图神经网络的商品异构实体表征探索

1.特定领域知识图谱知识融合方案(实体对齐):金融产业产业知识图谱-基于内容匹配和图模型的品牌知识链指

1.知识融合算法测试方案(知识生产质量保障)

1.特定领域知识图谱知识融合方案(实体对齐、实体链接)论文合集

1.1基于知识图谱的项目实战:优酷搜索泛查询意图优化
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.3知识融合关键环节算法项目实战(文本匹配算法)

2.特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置【一】文本匹配算法、知识融合学术界方案、知识融合业界落地方案、算法测评KG生产质量保障

2.特定领域知识图谱融合方案:文本匹配算法(Simnet、Simcse、Diffcse)【二】

2.特定领域知识图谱融合方案:文本匹配算法之预训练Simbert、ERNIE-Gram单塔模型等诸多模型【三】

2.特定领域知识图谱融合方案:学以致用-问题匹配鲁棒性评测比赛验证【四】

2.基于文心大模型套件ERNIEKit实现文本匹配算法,模块化方便应用落地

在这里插入图片描述

在这里插入图片描述

2.4 知识融合项目实战最新篇(基于语义匹配实现数据融合)

语义检索系统【一】:基于无监督预训练语义索引召回:SimCSE、Diffcse

语义检索系统【二】:基于无监督训练SimCSE+In-batch Negatives策略有监督训练的语义索引召回

语义检索系统【三】:基于Milvus 搭建召回系统抽取向量进行检索,加速索引

语义检索系统【四】:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练的单塔模型实现数据精排

语义检索系统【全】:基于Milvus+ERNIE+SimCSE+IBN实现学术文献语义检索系统完整版

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2.5 知识图谱技术依赖收集推荐

3.知识图谱业务落地技术推荐之图神经网络算法库&图计算框架汇总

3.知识图谱业务落地技术推荐之图数据库汇总

3.知识图谱业务落地技术推荐之国内知识图谱平台汇总(竞品)阿里、腾讯、华为等

3.知识图谱概念和相关技术简介[知识抽取、知识融合、知识推理方法简述],典型应用案例介绍国内落地产品介绍。一份完整的入门指南,带你快速掌握KG知识,芜湖起飞

3.知识图谱相关学习资料汇总,提供系统化的知识图谱学习路径。一份详细的指南,补全你知识的漏洞

4.2023计算机领域顶会(A类)以及ACL 2023自然语言处理(NLP)研究子方向领域汇总

4.NLP知识图谱项目合集(信息抽取、文本分类、图神经网络、性能优化等)

在这里插入图片描述

2.6 知识推理

A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[一](基于距离的翻译模型:TransE、TransH、TransR、TransH、TransA、RotatE)

A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[二](DTransE/PairRE:基于表示学习的知识图谱链接预测算法)

A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[三](基于语义的匹配模型:张量分解模型RESCAL、ComplEx神经网络SEM,NAM),OpenKE工具包。

A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[四](基于图传播的模型:node2vec、GCN、Graphsage、GeniePath等)算法汇总和应用场景归纳

A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[五]-GeniePath会自动过滤多度“邻居“的图神经网络算法。

B.特定领域知识图谱知识推理方案[一]:基于表示学习的知识感知推理算法[对抗负采样、Logic Rule,链接预测任务]在关系预测、推荐场景下应用

B.特定领域知识图谱知识推理方案[二]:基于自监督图谱表征算法升级[特征交叉、邻居采样修正、生成学习、对比学习等]

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

更多内容逐步更新中

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值