LLM 大模型学习必知必会系列(二):提示词工程-Prompt Engineering 以及实战闯关
prompt(提示词)是我们和 LLM 互动最常用的方式,我们提供给 LLM 的 Prompt 作为模型的输入,并希望 LLM 反馈我们期待的结果。 虽然 LLM 的功能非常强大,但 LLM 对提示词(prompt)也非常敏感。这使得提示词工程成为一项需要培养的重要技能。
推荐使用环境:通义千问 - 72B - 对话 - Demo · 创空间 (modelscope.cn)
- LLM 的超参配置
LLM 提供了一些参数可以影响输出结果的创造力和确定性。 在每个步骤中,LLM 会生成一个最有可能出现的 token 列表以及其对应的概率列表。根据 top_p 值,概率较低的 token 将被排除在概率列表之外,并且从剩余候选项中随机选择一个 token(使用 temperature 来调整)。简单来说:top_p 参数