【强化学习】17 ——DDPG(Deep Deterministic Policy Gradient)

本文介绍了深度确定性策略梯度(DDPG)算法,一种在离线数据和确定性策略下提高样本效率的强化学习方法。DDPG结合了经验回放、目标网络和软更新策略,适用于连续动作空间,相较于在线学习算法更稳定且收敛快。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

之前的章节介绍了基于策略梯度的算法 REINFORCE、Actor-Critic 以及两个改进算法——TRPO 和 PPO。这类算法有一个共同的特点:它们都是在线策略算法,这意味着它们的样本效率(sample efficiency)比较低。本章将要介绍的深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法通过使用离线的数据以及Belllman等式去学习 Q Q Q函数,并利用 Q Q Q函数去学习策略。

DDPG特点

  • DDPG是离线学习算法
  • DDPG可以在连续的动作空间中进行使用
  • Open AI Spinning Up 中的DDPG未实现并行运行

随机策略与确定性策略

首先来回顾一下随机策略与确定性策略相关内容

随机策略

  • 离散动作: π ( a ∣ s ; θ ) = exp ⁡ { Q θ ( s , a ) } ∑ a , exp ⁡ { Q θ ( s , a ′ ) } \pi(a|s;\theta)=\frac{\exp\{Q_\theta(s,a)\}}{\sum_a,\exp\{Q_\theta(s,a^{\prime})\}} π(as;θ)=a,exp{Qθ(s,a)}exp{Qθ(s,a)},学习出价值函数之后再求取相应的softmax分布
  • 连续动作: π ( a ∣ s ; θ ) ∝ exp ⁡ { ( a − μ θ ( s ) ) 2 } \pi(a|s;\theta)\propto\exp\left\{\left(a-\mu_\theta(s)\right)^2\right\} π(as;θ)exp{(aμθ(s))2},学习出的策略符合高斯分布(均值,方差)

确定性策略

  • 离散动作: π ( s ; θ ) = arg ⁡ max ⁡ a Q θ ( s , a ) \pi(s;\theta)=\arg\max_aQ_\theta(s,a) π(s;θ)=argmaxaQθ(s,a)策略不可微,但可以通过学习价值函数再求取argmax的方式得到相应的策略
  • 连续动作: a = π ( s ; θ ) a=\pi(s;\theta) a=π(s;θ)策略可微,建立相应的函数映射,通过函数求导的方式进行策略学习

那么如何利用确定性策略学习连续动作呢?首先需要一个用于估计价值的Critic模块。 Q w ( s , a ) ≃ Q π ( s , a ) Q^w(s,a)\simeq Q^\pi(s,a) Qw(s,a)Qπ(s,a) L ( w ) = E s ∼ ρ π , a ∼ π θ [ ( Q w ( s , a ) − Q π ( s , a ) ) 2 ] L(w)=\mathbb{E}_{s\sim\rho^\pi,a\sim\pi_\theta}\left[\left(Q^w(s,a)-Q^\pi(s,a)\right)^2\right] L(w)=Esρπ,aπθ[(Qw(s,a)Qπ(s,a))2]

通过与环境的交互,可以获得状态的总体分布,又因为 a = π ( s ; θ ) a=\pi(s;\theta) a=π(s;θ),因此可以利用链式法则进行求导。首先是 Q Q Q函数对 a a a进行求导( Q Q Q函数通常由网络学习出来,对 a a a向量进行求导相当于是调整相应的梯度以使得获得更大的 Q Q Q值),接着因为 a = π ( s ; θ ) a=\pi(s;\theta) a=π(s;θ),所以 a a a π \pi π进行求导。
J ( π θ ) = E s ∼ ρ π [ Q π ( s , a ) ] J(\pi_\theta)=\mathbb{E}_{s\sim\rho^\pi}[Q^\pi(s,a)] J(πθ)=Esρπ[Qπ(s,a)] ∇ θ J ( π θ ) = E s ∼ ρ π [ ∇ θ π θ ( s ) ∇ a Q π ( s , a ) ∣ a = π θ ( s ) ] \nabla_\theta J(\pi_\theta)=\mathbb{E}_{s\sim\rho^\pi}[\nabla_\theta\pi_\theta(s)\nabla_aQ^\pi(s,a)|_{a=\pi_\theta(s)}] θJ(πθ)=Esρπ[θπθ(s)aQπ(s,a)a=πθ(s)]

上式即为确定性策略梯度定理。确定性策略梯度定理的具体证明过程可参考《动手学强化学习》13.5 节

DDPG:深度确定性策略梯度

在实际应用中,上述的带有神经函数近似器的actor-critic方法在面对有
挑战性的问题时是不稳定的。深度确定性策略梯度(DDPG)给出了在确定性策略梯度(DPG)基础上的解决方法:
• 经验重放(离线策略)
• 目标网络
• 在动作输入前标准化Q网络
• 添加连续噪声

下面我们来看一下 DDPG 算法的细节。DDPG 要用到4个神经网络,其中 Actor 和 Critic 各用一个网络,此外它们都各自有一个目标网络。DDPG 中 Actor 也需要目标网络因为目标网络也会被用来计算目标 Q Q Q值。DDPG 中目标网络的更新与 DQN 中略有不同:在 DQN 中,每隔一段时间将 Q Q Q网络直接复制给目标 Q Q Q网络;而在 DDPG 中,目标 Q Q Q网络的更新采取的是一种软更新(延时更新)的方式,即让目标 Q Q Q网络缓慢更新,逐渐接近网络,其公式为:
ω − ← τ ω + ( 1 − τ ) ω − \omega^-\leftarrow\tau\omega+(1-\tau)\omega^- ωτω+(1τ)ω

通常 τ \tau τ是一个比较小的数,当 τ = 1 \tau=1 τ=1时,就和 DQN 的更新方式一致了。而目标 μ \mu μ网络(策略网络)也使用这种软更新的方式。

另外,由于 Q Q Q函数存在 Q Q Q值过高估计的问题,DDPG 采用了 Double DQN 中的技术来更新 Q Q Q网络。但是,由于 DDPG 采用的是确定性策略,它本身的探索仍然十分有限。回忆一下 DQN 算法,它的探索主要由 ϵ \epsilon ϵ-贪婪策略的行为策略产生。同样作为一种离线策略的算法,DDPG 在行为策略上引入一个 N \mathcal{N} N随机噪声(原论文使用的是OU噪声,后来许多实验证明高斯噪声具有更好的效果)来进行探索。
在这里插入图片描述

OU噪声

伪代码

在这里插入图片描述

在这里插入图片描述

代码实践

import gymnasium as gym
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
import util

class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim, action_bound):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
        # action_bound是环境可以接受的动作最大值
        self.action_bound = action_bound

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return torch.tanh(self.fc2(x)) * self.action_bound

class QValueNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(QValueNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim + action_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim)
        self.fc_out = torch.nn.Linear(hidden_dim, 1)

    def forward(self, s, a):
        # 拼接状态和动作
        cat = torch.cat([s, a], dim=1)
        x = F.relu(self.fc1(cat))
        x = F.relu(self.fc2(x))
        return self.fc_out(x)

class DDPG:
    ''' DDPG算法 '''
    def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr, gamma,
                action_bound, sigma, tau, buffer_size, minimal_size, batch_size, device, numOfEpisodes, env):
        self.action_dim = action_dim
        self.actor = PolicyNet(state_dim, hidden_dim, action_dim, action_bound).to(device)
        self.critic = QValueNet(state_dim, hidden_dim, action_dim).to(device)
        self.target_actor = PolicyNet(state_dim, hidden_dim, action_dim, action_bound).to(device)
        self.target_critic = QValueNet(state_dim, hidden_dim, action_dim).to(device)
        # 初始化目标价值网络并设置和价值网络相同的参数
        self.target_critic.load_state_dict(self.critic.state_dict())
        # 初始化目标策略网络并设置和策略相同的参数
        self.target_actor.load_state_dict(self.actor.state_dict())
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.gamma = gamma
        self.sigma = sigma  # 高斯噪声的标准差,均值直接设为0
        self.tau = tau  # 目标网络软更新参数
        self.device = device
        self.env = env
        self.numOfEpisodes = numOfEpisodes
        self.buffer_size = buffer_size
        self.minimal_size = minimal_size
        self.batch_size = batch_size

    def take_action(self, state):
        state = torch.FloatTensor(np.array([state])).to(self.device)
        action = self.actor(state).item()
        # 给动作添加噪声,增加探索
        action = action + self.sigma * np.random.randn(self.action_dim)
        return action

    def soft_update(self, net, target_net):
        for param_target, param in zip(target_net.parameters(), net.parameters()):
            param_target.data.copy_(param_target.data * (1.0 - self.tau) + param.data * self.tau)

    def update(self, transition_dict):
        states = torch.tensor(np.array(transition_dict['states']), dtype=torch.float).to(self.device)
        actions = torch.tensor(np.array(transition_dict['actions']), dtype=torch.float).view(-1, 1).to(self.device)
        rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(np.array(transition_dict['next_states']), dtype=torch.float).to(self.device)
        terminateds = torch.tensor(transition_dict['terminateds'], dtype=torch.float).view(-1, 1).to(self.device)
        truncateds = torch.tensor(transition_dict['truncateds'], dtype=torch.float).view(-1, 1).to(self.device)
        q_targets = rewards + self.gamma * (self.target_critic(next_states, self.target_actor(next_states))) * (1 - terminateds + truncateds)
        critic_loss = torch.mean(F.mse_loss(q_targets, self.critic(states, actions)))
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()

        actor_loss = -torch.mean(self.critic(states, self.actor(states)))
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        self.soft_update(self.actor, self.target_actor)  # 软更新策略网络
        self.soft_update(self.critic, self.target_critic)  # 软更新价值网络

    def DDPGtrain(self):
        replay_buffer = util.ReplayBuffer(self.buffer_size)
        returnList = []
        for i in range(10):
            with tqdm(total=int(self.numOfEpisodes / 10), desc='Iteration %d' % i) as pbar:
                for episode in range(int(self.numOfEpisodes / 10)):
                    # initialize state
                    state, info = self.env.reset()
                    terminated = False
                    truncated = False
                    episodeReward = 0
                    # Loop for each step of episode:
                    while (not terminated) or (not truncated):
                        action = self.take_action(state)
                        next_state, reward, terminated, truncated, info = self.env.step(action)
                        replay_buffer.add(state, action, reward, next_state, terminated, truncated)
                        state = next_state
                        episodeReward += reward
                        # 当buffer数据的数量超过一定值后,才进行Q网络训练
                        if replay_buffer.size() > self.minimal_size:
                            b_s, b_a, b_r, b_ns, b_te, b_tr = replay_buffer.sample(self.batch_size)
                            transition_dict = {
                                'states': b_s,
                                'actions': b_a,
                                'next_states': b_ns,
                                'rewards': b_r,
                                'terminateds': b_te,
                                'truncateds': b_tr
                            }
                            self.update(transition_dict)
                        if terminated or truncated:
                            break
                    returnList.append(episodeReward)
                    if (episode + 1) % 10 == 0:  # 每10条序列打印一下这10条序列的平均回报
                        pbar.set_postfix({
                            'episode':
                                '%d' % (self.numOfEpisodes / 10 * i + episode + 1),
                            'return':
                                '%.3f' % np.mean(returnList[-10:])
                        })
                    pbar.update(1)
        return returnList

超参数设置参考:

    agent = DDPG(state_dim=env.observation_space.shape[0],
                 hidden_dim=256,
                 action_dim=env.action_space.shape[0],
                 actor_lr=3e-4,
                 critic_lr=3e-3,
                 gamma=0.99,
                 action_bound=env.action_space.high[0],
                 sigma=0.01,
                 tau=0.005,
                 buffer_size=10000,
                 minimal_size=1000,
                 batch_size=64,
                 device=device,
                 numOfEpisodes=200,
                 env=env)

在这里插入图片描述
DDPG算法相比之前的在线学习算法,更加稳定,同时收敛速度更快。

深度确定性策略梯度算法(DDPG),它是面向连续动作空间的深度确定性策略训练的典型算法。相比于它的先期工作,即确定性梯度算法(DPG),DDPG 加入了目标网络和软更新的方法,这对深度模型构建的价值网络和策略网络的稳定学习起到了关键的作用。

### 回答1: Deep Deterministic Policy GradientDDPG)是一种基于深度神经网络的强化学习算法。它是用来解决连续控制问题的,即输出动作的取值是连续的。DDPG是在DPG(Deterministic Policy Gradient)的基础上进行改进得到的,DPG是一种在连续动作空间中的直接求导策略梯度的方法。DDPG和DPG都属于策略梯度算法的一种,与其他策略梯度算法(如REINFORCE)的不同之处在于,DPG和DDPG都是基于偏微分方程的直接求导,而不是蒙特卡罗方法进行计算。DDPG使用一个确定性策略来生成动作,但同时使用一个噪声过程来扰动输出的动作,以产生更多的状态动作样本。这样一来,DDPG就具有了良好的探索能力,使得它在解决复杂的连续动作问题时能取得较好的效果。 ### 回答2: 深度确定性策略梯度(Deep Deterministic Policy GradientDDPG)是一种用于解决深度强化学习问题的方法。 DDPG是基于确定性策略梯度(Deterministic Policy Gradient,DPG)的算法,可以在连续动作空间下进行强化学习。与传统的策略梯度方法不同,DDPG直接学习确定性策略,在给定状态下选择最优的动作。 DDPG主要由两个网络组成:一个是Actor网络,用于学习确定性策略;另一个是Critic网络,用于估计状态-动作对的Q值。Actor网络根据当前状态选择动作,Critic网络根据当前状态和动作的组合估计其对应的Q值。通过不断地交互环境、收集数据和更新网络参数,DDPG算法逐渐优化确定性策略和Q值估计,以使得智能体在环境中获得更高的累积奖励。 DDPG算法的核心思想是通过使用Experience Replay和目标网络来提高学习的稳定性和收敛性。Experience Replay将智能体与环境的交互经验存储在一个经验回放缓冲区中,然后从中随机采样进行训练;目标网络通过延迟更新目标网络的方式,减小训练中的目标值变动,从而提高算法的稳定性。 DDPG算法在解决连续控制任务中表现出良好的性能和收敛性,可以应用于机器人控制、无人驾驶、金融交易等复杂任务中。然而,DDPG算法也存在一些挑战和问题,如对超参数的敏感性、样本效率较低等,这些问题是DDPG算法持续改进的方向之一。 ### 回答3: Deep Deterministic Policy GradientDDPG)是一种用于连续动作空间的深度强化学习算法。它结合了深度神经网络和确定性策略梯度的优势,可以应用于诸如机器人控制和金融投资等领域。 DDPG算法的核心思想是通过在连续动作空间中学习一个行动者-评论家系统。行动者使用确定性策略,即给定状态输出一个具体的动作,而评论家则评估行动者的动作质量。这两个网络都是用深度神经网络来表示,并通过梯度下降来进行优化。 在训练过程中,DDPG使用了经验回放缓冲区来存储之前的转换并随机采样进行训练。这样做可以解决样本相关性和非稳定性问题。同时,为了保持算法的探索性,DDPG采用了一个目标网络,用于与主网络进行定期的软更新。 DDPG的优点在于能够处理连续动作空间,通过近似价值函数和策略函数,对高维、非线性状态空间进行建模。此外,DDPG还有很好的收敛性和稳定性,可以在复杂任务中取得较好性能。 然而,DDPG也存在一些挑战。由于使用了神经网络近似值函数,对网络结构的选择和超参数的调整都非常重要。此外,训练过程中可能会出现训练不稳定的问题,需要进行合适的技巧和调整。 总结来说,DDPG是一种深度强化学习算法,适用于连续动作空间的问题。通过结合确定性策略梯度和深度神经网络的优势,DDPG能够解决高维、非线性状态空间的问题,并在复杂任务中取得好的性能。然而,对网络结构和超参数的选择需要仔细调整,且训练过程中可能存在稳定性问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuan〇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值