3.使用CIFAR10数据集进行池化,并传到tensorboard上
一.池化层
1.官方文档位置:
Pooling layers 池化层
2.MaxPool2d参数:
kernel_size:取最大值的窗口
stride:窗口移动的步数,默认是核的size
ceil_mode:
3.作用与目的
保留输入的特征,同时把数据量减小,训练的更快
二.MaxPool2d的应用
1.输入和输出类型
需要创建完tensor数据类型,用reshape改变input的shape
2.创建5*5的张量进行池化的代码(带详解)
import torch
from torch import nn
from torch.nn import MaxPool2d
# 创建tensor数据类型的张量
Input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]], dtype=torch.float32)
# 改变input的shape满足参数要求
Input = torch.reshape(input=Input, shape=(-1, 1, 5, 5))
print(Input.shape)
# 构造自己需要的网络
class MaxPool(nn.Module): # 记得继承
def __init__(self): # 初始化
super().__init__()
self.maxpool = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool(input)
return output
# 创建实例
mp = MaxPool()
output = mp(input)
print(output)
3.使用CIFAR10数据集进行池化,并传到tensorboard上 代码
import torchvision.datasets
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# ###对数据集进行池化
# 数据集的创建
dataset = torchvision.datasets.CIFAR10('../dataset', train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# 加载数据集
dataloader = DataLoader(dataset=dataset, batch_size=64)
# 创建池化层
class Max(nn.Module):
def __init__(self):
super().__init__()
self.MaxPool = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.MaxPool(input)
return output
writer = SummaryWriter('../MaxPool2d') # 创建文件夹
tudui = Max()
step = 0
for data in dataloader:
imgs, targets = data
writer.add_images('input', imgs, step) # 注意是add_images,如果是add_image会提示shape不对
output = tudui(imgs)
writer.add_images('ouput', output, step)
step = step + 1
writer.close()