神经网络最大池化的使用 —— P19 小土堆

一.池化层

1.官方文档位置:

2.MaxPool2d参数:

3.作用与目的

二.MaxPool2d的应用

1.输入和输出类型

2.创建5*5的张量进行池化的代码(带详解)

3.使用CIFAR10数据集进行池化,并传到tensorboard上

3.结果展示


一.池化层

1.官方文档位置:

Pooling layers 池化层

2.MaxPool2d参数:

kernel_size:取最大值的窗口
stride:窗口移动的步数,默认是核的size
ceil_mode:

3.作用与目的

保留输入的特征,同时把数据量减小,训练的更快

二.MaxPool2d的应用

1.输入和输出类型

需要创建完tensor数据类型,用reshape改变input的shape

2.创建5*5的张量进行池化的代码(带详解)

import torch
from torch import nn
from torch.nn import MaxPool2d

# 创建tensor数据类型的张量
Input = torch.tensor([[1, 2, 0, 3, 1],
                     [0, 1, 2, 3, 1],
                     [1, 2, 1, 0, 0],
                     [5, 2, 3, 1, 1],
                     [2, 1, 0, 1, 1]], dtype=torch.float32)
# 改变input的shape满足参数要求
Input = torch.reshape(input=Input, shape=(-1, 1, 5, 5))
print(Input.shape)


# 构造自己需要的网络
class MaxPool(nn.Module):  # 记得继承
    def __init__(self):    # 初始化
        super().__init__()
        self.maxpool = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool(input)
        return output


# 创建实例
mp = MaxPool()
output = mp(input)
print(output)

3.使用CIFAR10数据集进行池化,并传到tensorboard上 代码

import torchvision.datasets
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# ###对数据集进行池化
# 数据集的创建
dataset = torchvision.datasets.CIFAR10('../dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
# 加载数据集
dataloader = DataLoader(dataset=dataset, batch_size=64)


# 创建池化层
class Max(nn.Module):
    def __init__(self):
        super().__init__()
        self.MaxPool = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.MaxPool(input)
        return output


writer = SummaryWriter('../MaxPool2d')  # 创建文件夹

tudui = Max()
step = 0

for data in dataloader:
    imgs, targets = data
    writer.add_images('input', imgs, step)  # 注意是add_images,如果是add_image会提示shape不对
    output = tudui(imgs)
    writer.add_images('ouput', output, step)
    step = step + 1

writer.close()

3.结果展示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值