sequential的使用以及搭建实战代码 P22 —— 小土堆笔记

1.对CIFAR10数据集进行分类

2.如何设置卷积的参数?

打开官方文档中对应的功能,

例如conv2d

将已知参数代入求未知参数。

3.网络的搭建

class Tudui(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2)  # ?参数选取:参考公式
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(32, 32, 5, padding=2)
        self.maxpool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(32, 64, 5, padding=2)
        self.maxpool3 = nn.MaxPool2d(2)
        self.flatten = nn.Flatten()
        self.linear1 = nn.Linear(1024, 64)  # ?如何查看展平后的数据个数
        self.linear2 = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

4.检查网络结构是否正确

tudui = Tudui()
# 检查模型搭建的正确性
input = torch.ones((64, 3, 32, 32))  # 指定大小,64个图片,3通道,32*32像素大小
output = tudui(input)
print(output.shape)

输出

符合构造的结构

5.sequential的使用

作用:简化构造的过程,看起来更简洁


class Tudui(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = Sequential(
            nn.Conv2d(3, 32, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

6. 查看数据的处理过程

# 查看过程
writer = SummaryWriter('../Logs_seq')
writer.add_graph(tudui, input)
writer.close()

过程图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值