StableFast3D :快速 3D 网格重建

一、大模型介绍

StableFast3D 具有 UV 展开和照明解缠的稳定快速 3D 网格重建,它是一种从单个图像进行快速前馈 3D 网格重建的最先进的开源模型。

二、大模型 InstantID 部署过程

基础环境最低要求说明:

环境名称版本信息1
Ubuntu22.04.4 LTS
CudaV12.1.105
Python3.12
NVIDIA CorporationRTX 3060

2.1 更新基础软件包

查看系统版本信息

# 查看系统版本信息,包括ID(如ubuntu、centos等)、版本号、名称、版本号ID等
cat /etc/os-release

1726627581255_image.png

配置 apt 国内源

# 更新软件包列表
apt-get update

这个命令用于更新本地软件包索引。它会从所有配置的源中检索最新的软件包列表信息,但不会安装或升级任何软件包。这是安装新软件包或进行软件包升级之前的推荐步骤,因为它确保了您获取的是最新版本的软件包。

# 安装 Vim 编辑器
apt-get install -y vim

这个命令用于安装 Vim 文本编辑器。-y 选项表示自动回答所有的提示为“是”,这样在安装过程中就不需要手动确认。Vim 是一个非常强大的文本编辑器,广泛用于编程和配置文件的编辑。

为了安全起见,先备份当前的 sources.list 文件之后,再进行修改:

# 备份现有的软件源列表
cp /etc/apt/sources.list /etc/apt/sources.list.bak

这个命令将当前的 sources.list 文件复制为一个名为 sources.list.bak 的备份文件。这是一个好习惯,因为编辑 sources.list 文件时可能会出错,导致无法安装或更新软件包。有了备份,如果出现问题,您可以轻松地恢复原始的文件。

# 编辑软件源列表文件
vim /etc/apt/sources.list

这个命令使用 Vim 编辑器打开 sources.list 文件,以便您可以编辑它。这个文件包含了 APT(Advanced Package Tool)用于安装和更新软件包的软件源列表。通过编辑这个文件,您可以添加新的软件源、更改现有软件源的优先级或禁用某些软件源。

在 Vim 中,您可以使用方向键来移动光标,i 键进入插入模式(可以开始编辑文本),Esc 键退出插入模式,:wq 命令保存更改并退出 Vim,或 :q! 命令不保存更改并退出 Vim。

编辑 sources.list 文件时,请确保您了解自己在做什么,特别是如果您正在添加新的软件源。错误的源可能会导致软件包安装失败或系统安全问题。如果您不确定,最好先搜索并找到可靠的源信息,或者咨询有经验的 Linux 用户。

1726627632814_image.png

使用 Vim 编辑器打开 sources.list 文件,复制以下代码替换 sources.list里面的全部代码,配置 apt 国内阿里源。

deb http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse

1726627649314_image.png

安装常用软件和工具

# 更新源列表,输入以下命令:
apt-get update

# 更新系统软件包,输入以下命令:
apt-get upgrade

# 安装常用软件和工具,输入以下命令:
apt-get -y install vim wget git git-lfs unzip lsof net-tools gcc cmake build-essential

出现以下页面,说明国内apt源已替换成功,且能正常安装apt软件和工具

1726627670779_image.png

2.2 安装 NVIDIA CUDA Toolkit 12.1

  • 下载 CUDA Keyring :
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb

这个命令用于下载 CUDA 的 GPG 密钥环,它用于验证 CUDA 软件包的签名。这是确保软件包安全性的一个重要步骤。

  • 安装 CUDA Keyring :
dpkg -i cuda-keyring_1.0-1_all.deb

使用 dpkg 安装下载的密钥环。这是必要的,以便 apt 能够验证从 NVIDIA 仓库下载的软件包的签名。

1726627689852_image.png

  • 删除旧的 apt 密钥(如果必要) :
apt-key del 7fa2af80

这一步可能不是必需的,除非您知道 7fa2af80 是与 CUDA 相关的旧密钥,并且您想从系统中删除它以避免混淆。通常情况下,如果您只是安装 CUDA 并使用 NVIDIA 提供的最新密钥环,这一步可以跳过。

  • 更新 apt 包列表 :
apt-get update

更新 apt 的软件包列表,以便包括刚刚通过 cuda-keyring 添加的 NVIDIA 仓库中的软件包。

  • 安装 CUDA Toolkit :
apt-get -y install cuda-toolkit-12-1

1726627724243_image.png

出现以下页面,说明 NVIDIA CUDA Toolkit 12.1 安装成功

1726627736357_image.png

注意:这里可能有一个问题。NVIDIA 官方 Ubuntu 仓库中可能不包含直接名为 cuda-toolkit-12-1 的包。通常,您会安装一个名为 cuda 或 cuda-12-1 的元包,它会作为依赖项拉入 CUDA Toolkit 的所有组件。请检查 NVIDIA 的官方文档或仓库,以确认正确的包名。

如果您正在寻找安装特定版本的 CUDA Toolkit,您可能需要安装类似 cuda-12-1 的包(如果可用),或者从 NVIDIA 的官方网站下载 CUDA Toolkit 的 .run 安装程序进行手动安装。

请确保您查看 NVIDIA 的官方文档或 Ubuntu 的 NVIDIA CUDA 仓库以获取最准确的包名和安装指令。

1726627761880_image.png

  • 出现以上情况,需要配置 NVIDIA CUDA Toolkit 12.1 系统环境变量

编辑 ~/.bashrc 文件

# 编辑 ~/.bashrc 文件
vim ~/.bashrc

插入以下环境变量

# 插入以下环境变量
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

1726627785017_image.png

激活 ~/.bashrc 文件

# 激活 ~/.bashrc 文件
source ~/.bashrc

查看cuda系统环境变量

which nvcc
nvcc -V

1726627797367_image.png

2.3 安装 Miniconda

  • 下载 Miniconda 安装脚本 :
    • 使用 wget 命令从 Anaconda 的官方仓库下载 Miniconda 的安装脚本。Miniconda 是一个更小的 Anaconda 发行版,包含了 Anaconda 的核心组件,用于安装和管理 Python 包。
  • 运行 Miniconda 安装脚本 :
    • 使用 bash 命令运行下载的 Miniconda 安装脚本。这将启动 Miniconda 的安装过程。
# 下载 Miniconda 安装脚本
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

# 运行 Miniconda 安装脚本
bash Miniconda3-latest-Linux-x86_64.sh

# 初次安装需要激活 base 环境
source ~/.bashrc

按下回车键(enter)

1726627823409_image.png

输入yes

1726627835177_image.png

输入yes

1726627844297_image.png

安装成功如下图所示

1726627852297_image.png

pip配置清华源加速

# 编辑 /etc/pip.conf 文件
vim  /etc/pip.conf

加入以下代码

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple

注意事项:

  • 请确保您的系统是 Linux x86_64 架构,因为下载的 Miniconda 版本是为该架构设计的。
  • 在运行安装脚本之前,您可能需要使用 chmod +x Miniconda3-latest-Linux-x86_64.sh 命令给予脚本执行权限。
  • 安装过程中,您将被提示是否同意许可协议,以及是否将 Miniconda 初始化。通常选择 "yes" 以完成安装和初始化。
  • 安装完成后,您可以使用 conda 命令来管理 Python 环境和包。
  • 如果链接无法访问或解析失败,可能是因为网络问题或链接本身的问题。请检查网络连接,并确保链接是最新的和有效的。如果问题依旧,请访问 Anaconda 的官方网站获取最新的下载链接。

2.4 从 github 仓库 克隆项目:

  • 克隆存储库:

git clone https://github.com/Stability-AI/stable-fast-3d.git

# 克隆 stable-fast-3d 项目
git clone https://github.com/Stability-AI/stable-fast-3d.git

1727330041553_0e6b7a62_12276338.png

出现以上页面即是克隆项目成功!

如果 github 无法访问,使用 国内镜像 进行克隆

1727330049582_0d85d602_12276338.png

git clone yangchl/stable-fast-3d

# 克隆 stable-fast-3d 项目
git clone https://gitee.com/empty-snow/stable-fast-3d.git

1727330054443_68ec4e39_12276338.png

出现以上页面即是克隆项目成功!

请注意,如果 git clone https://github.com/Stability-AI/stable-fast-3d.git 这个链接不存在或者无效,git clone 命令将不会成功克隆项目,并且会报错。确保链接是有效的,并且您有足够的权限访问该存储库。

2.5 创建虚拟环境

# 创建一个名为 StableFast3D 的新虚拟环境,并指定 Python 版本为 3.12
conda create -n StableFast3D python=3.12

1727330061799_d4bb8755_12276338.png

输入 y

1727330065598_def83b40_12276338.png

2.6 安装模型依赖库:

  • 切换到项目目录、激活虚拟环境、安装依赖
# 切换到 stable-fast-3d 项目工作目录
cd stable-fast-3d

# 激活 StableFast3D 虚拟环境
conda activate StableFast3D

# 更新 setuptools
pip install -U setuptools==69.5.1

# 安装 requirements.txt 依赖
pip install -r requirements.txt

1727330073089_2b7beff2_12276338.png

出现以上报错,需要修改 requirements.txt 文件

vim requirements.txt

1727330079109_1f9cb63c_12276338.png

整体替换为:

einops==0.7.0
jaxtyping==0.2.31
omegaconf==2.3.0
transformers==4.42.3
slangtorch==1.2.2
open_clip_torch==2.24.0
trimesh==4.4.1
numpy==1.26.4
huggingface-hub==0.23.4
rembg[gpu]==2.0.57
git+https://gitee.com/empty-snow/PyNanoInstantMeshes.git
gpytoolbox==0.2.0
  • 再次执行安装代码
# 切换到 stable-fast-3d 项目工作目录
cd /stable-fast-3d

# 激活 StableFast3D 虚拟环境
conda activate StableFast3D

# 更新 setuptools
pip install -U setuptools==69.5.1

# 安装 requirements.txt 依赖
pip install -r requirements.txt

1727330089530_59a67c2f_12276338.png

出现以上报错,需要手动安装

apt-get update
apt-get install build-essential cmake
pip install gpytoolbox

1727330094068_f5071470_12276338.png

继续安装 requirements-demo.txt 依赖

# 安装 requirements-demo.txt 依赖
pip install -r requirements-demo.txt

1727330098490_0d281e0e_12276338.png

  • 依赖安装成功如下图所示:

1727330102429_39cc5839_12276338.png

运行 gradio_app.py 文件,检查依赖是否安装成功:

python gradio_app.py

1727330112699_e3d14d81_12276338.png

继续根据报错安装相关依赖:

pip install rembg

1727330121908_773dbaf8_12276338.png

继续运行 gradio_app.py 文件:

python gradio_app.py

1727330128448_3d8c8796_12276338.png

继续根据报错安装相关依赖:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

输入 y

1727330134062_af597d87_12276338.png

等待安装完成

1727330140049_12f8be50_12276338.png

1727330143236_05b74d24_12276338.png

继续运行 gradio_app.py 文件:

python gradio_app.py

1727330147839_9f25617c_12276338.png

继续根据报错安装相关依赖:

pip install jaxtyping

1727330155146_656c814a_12276338.png

继续运行 gradio_app.py 文件:

python gradio_app.py

1727330159866_55ab4042_12276338.png

继续根据报错安装相关依赖:

pip install omegaconf

1727330164518_1fca29a1_12276338.png

继续运行 gradio_app.py 文件:

python gradio_app.py

1727330169252_f3ad1f9a_12276338.png

继续根据报错安装相关依赖:

pip install trimesh

1727330173369_de91e6fc_12276338.png

继续运行 gradio_app.py 文件:

python gradio_app.py

1727330177780_96896bd5_12276338.png

继续根据报错安装相关依赖:

pip install einops

1727330217086_dfac1432_12276338.png

继续运行 gradio_app.py 文件:

python gradio_app.py

1727330235726_4651116a_12276338.png

继续根据报错安装相关依赖:

pip install safetensors

1727330247735_5eb42add_12276338.png

继续运行 gradio_app.py 文件:

python gradio_app.py

1727330253737_253e532a_12276338.png

继续根据报错安装相关依赖:

pip install pynim

1727330259270_0c712b5a_12276338.png

继续运行 gradio_app.py 文件:

python gradio_app.py

1727330264576_db2e4700_12276338.png

继续根据报错安装相关依赖:

pip install slangtorch

1727330269380_809b0019_12276338.png

2.7 下载预训练模型:

  • 官网没有说明模型名称,只能执行 gradio_app.py 文件进行尝试:
python gradio_app.py

1727330280261_89160df5_12276338.png

等待以上 /root/.u2net/u2net.onnx 文件下载完成,断联之后多尝试几次:

1727330285672_799092b3_12276338.png

根据以上报错提示,进入 Hugging Face 官网或者 HF Mirror 国内镜像进行模型搜索、下载,此处演示 HF Mirror 国内镜像:

1727330304156_bbd749f4_12276338.png

1727330307555_ca147dc2_12276338.png

# 下载模型
git lfs install
git clone https://hf-mirror.com/stabilityai/stable-fast-3d stabilityai/stable-fast-3d

1727330312974_fb97dda9_12276338.png

此模型无法通过 Hugging Face 官网或者 HF Mirror 国内镜像进行下载,则使用 魔塔社区 进行尝试:

# 下载模型
git lfs install
git clone https://www.modelscope.cn/maple77/stable-fast-3d.git stabilityai/stable-fast-3d

1727330331769_5dc4e576_12276338.png

再次运行 gradio_app.py 文件

# 运行 gradio_app.py 文件
python gradio_app.py

1727330400370_1bb5106c_12276338.png

等待以上文件下载完成

1727330412488_faaa529a_12276338.png

继续根据报错安装相关依赖:

pip install transformers

1727330420121_d2e4048f_12276338.png

再次运行 gradio_app.py 文件

# 运行 gradio_app.py 文件
python gradio_app.py

1727330431096_926b190f_12276338.png

出现以上报错,需要继续安装 facebook/dinov2-large 模型:

1727330437376_3df846d8_12276338.png

1727330440359_252286f6_12276338.png

# 下载模型
git lfs install
git clone https://hf-mirror.com/facebook/dinov2-large facebook/dinov2-large

1727330444716_614277b0_12276338.png

再次运行 gradio_app.py 文件

# 运行 gradio_app.py 文件
python gradio_app.py

1727330454139_762e415f_12276338.png

出现以上报错,需要继续安装 laion/CLIP-ViT-B-32-laion2B-s34B-b79K 模型:

# 下载模型
git lfs install
git clone https://hf-mirror.com/laion/CLIP-ViT-B-32-laion2B-s34B-b79K laion/CLIP-ViT-B-32-laion2B-s34B-b79K

1727330472616_bdaf97fe_12276338.png

再次运行 gradio_app.py 文件

# 运行 gradio_app.py 文件
python gradio_app.py

1727330540467_a2358e46_12276338.png

继续根据报错安装相关依赖:

pip install open_clip_torch

1727330547086_c76beec3_12276338.png

再次运行 gradio_app.py 文件

# 运行 gradio_app.py 文件
python gradio_app.py

1727330571147_ba3ee310_12276338.png

再次运行 gradio_app.py 文件

# 切换到 stable-fast-3d 项目工作目录
cd /stable-fast-3d

# 激活 StableFast3D 虚拟环境
conda activate StableFast3D

# 设置 huggingface 加速
export HF_ENDPOINT=https://hf-mirror.com

# 运行 gradio_app.py 文件
python gradio_app.py

1727330584583_30e44159_12276338.png

等待模型下载完成

1727330589119_0f0ccada_12276338.png

出现以上问题,需要重新安装 slangtorch 依赖包

pip install slangtorch==1.2.2

1727330594620_f1815809_12276338.png

2.8 运行 gradio_app.py 文件

# 切换到 stable-fast-3d 项目工作目录
cd /stable-fast-3d

# 激活 StableFast3D 虚拟环境
conda activate StableFast3D

# 设置 huggingface 加速
export HF_ENDPOINT=https://hf-mirror.com

# 运行 gradio_app.py 文件
python gradio_app.py

1727330600831_5a953f94_12276338.png

出现以上访问链接,则代表模型已经部署成功,现在还需要修改访问IP和端口号:

# 切换到 stable-fast-3d 项目工作目录
cd /stable-fast-3d

# 激活 StableFast3D 虚拟环境
conda activate StableFast3D

# 设置 huggingface 加速
export HF_ENDPOINT=https://hf-mirror.com

# 设置 Gradio 服务器名称和端口
export GRADIO_SERVER_NAME=0.0.0.0
export GRADIO_SERVER_PORT=8080

# 运行 gradio_app.py 文件
python gradio_app.py

1727330606449_f7671fff_12276338.png

三、Web页面

最后出现以下 gradio 页面,即是模型已搭建完成。

1727330612032_47cec42f_12276338.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值