引言
随着对话系统的复杂性增加,开发人员希望实现能够保持上下文和记忆的智能交互。本文将探讨如何使用检索增强生成(RAG)和代理技术打造这样的对话系统。我们将涵盖对话历史的管理,以及如何通过链和代理来处理历史消息。
主要内容
理解对话历史
在复杂的对话系统中,保持对话历史至关重要。通过维护一个会话历史记录,我们可以确保用户的上下文被保留,从而提高对话的连贯性。
两种方法:链和代理
链(Chains)
链方法始终执行一个检索步骤,通过将用户输入与历史消息结合来获取相关信息。我们可以构建一个问题回答链来处理这些消息。
代理(Agents)
代理使用大语言模型(LLM)的推理能力来决定是否执行检索步骤。代理可以根据用户输入进行多个检索或完全跳过检索。
设置环境
我们将使用OpenAI的嵌入和Chroma向量存储库。需要安装以下Python包:
%%capture --no-stderr
%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-chroma bs4
LangSmith
对于复杂的应用程序,使用LangSmith可以帮助跟踪多个LLM调用的执行步骤。这有助于更好地理解链或代理的内部运作。
代码示例
下面是一个简单的RAG链的实现示例:
import bs4
from langchain.chains <