构建智能对话系统:使用RAG和代理的进阶指南

引言

随着对话系统的复杂性增加,开发人员希望实现能够保持上下文和记忆的智能交互。本文将探讨如何使用检索增强生成(RAG)和代理技术打造这样的对话系统。我们将涵盖对话历史的管理,以及如何通过链和代理来处理历史消息。

主要内容

理解对话历史

在复杂的对话系统中,保持对话历史至关重要。通过维护一个会话历史记录,我们可以确保用户的上下文被保留,从而提高对话的连贯性。

两种方法:链和代理

链(Chains)

链方法始终执行一个检索步骤,通过将用户输入与历史消息结合来获取相关信息。我们可以构建一个问题回答链来处理这些消息。

代理(Agents)

代理使用大语言模型(LLM)的推理能力来决定是否执行检索步骤。代理可以根据用户输入进行多个检索或完全跳过检索。

设置环境

我们将使用OpenAI的嵌入和Chroma向量存储库。需要安装以下Python包:

%%capture --no-stderr
%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-chroma bs4

LangSmith

对于复杂的应用程序,使用LangSmith可以帮助跟踪多个LLM调用的执行步骤。这有助于更好地理解链或代理的内部运作。

代码示例

下面是一个简单的RAG链的实现示例:

import bs4
from langchain.chains <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值