探索Vectara:构建基于数据的生成式AI体验
引言
在当今快速发展的技术世界中,企业需要创新的方法来管理和利用其海量数据。Vectara提供了一个值得信任的生成式AI平台,使得组织可以在其数据、文档和知识的基础上迅速创建类似ChatGPT的体验。本文将深入探讨Vectara的功能,并展示如何使用其API来实现高效的数据检索和生成。
主要内容
1. 什么是Vectara?
Vectara是一个无服务器的RAG(检索增强生成)平台,提供了一整套易于使用的API。这些API可以从多种文件类型中提取文本,进行机器学习驱动的分块,并存储在其内部的向量数据库中。
2. Vectara的核心组件
- 文本提取:支持多种文件格式(PDF, PPT, DOCX等)。
- 机器学习分块:提供最先进的性能。
- 嵌入模型:通过Boomerang嵌入模型实现高效编码。
- 检索服务:自动将查询编码为嵌入,并检索最相关的文本段落。
- 生成式总结:使用大型语言模型(LLM)根据检索到的文档生成总结,包括引用。
3. 使用Vectara进行检索
Vectara不仅仅支持生成,也可以用于纯检索功能。本文将重点展示如何将Vectara作为向量存储进行相似性搜索。
代码示例
要开始使用Vectara,你需要一个免费账号,并设置API访问权限。以下是一个简单的Python代码示例,展示如何进行基本的检索操作:
import os
import getpass
from