DeepSeek+本地知识库实践:基于Cherry Studio和Ollama搭建

Cherry Studio介绍

官网:Cherry Studio - 全能的AI助手

Cherry Studio 是一个支持多模型服务的桌面客户端,为专业用户而打造,内置 30 多个行业的智能助手,帮助用户在多种场景下提升工作效率。

Cherry Studio支持多种场景应用,不过还是有一些限制,比如画图只能调用硅基流动的服务。

特色功能:多模型对话,可以选中多个模型,对同一个问题就行回答。

Cherry Studio安装

首先下载Cherry:

Cherry Studio - 全能的AI助手

点击“下载客户端”,下载适合自己操作系统的客户端。

比如Windows下非常简单方便,下载后直接安装即可。

Ollama安装

Ollama可以直接安装,在Ubuntu下使用apt进行安装,在Windows下可以直接下载安装包进行安装。

Ollama的安装参考:

在Windows下安装Ollama并体验DeepSeek r1大模型_ollama-windows-amd64 下载-CSDN博客

使用Ollama 在Ubuntu运行deepseek大模型:以deepseek-r1为例_ubuntu deepseek-CSDN博客

Cherry配置模型

在模型服务中配置Ollama

启动Cherry后,先配置大模型。 配置模型需要点左下角的“设置”按钮,然后在“模型服务”里进行设置,比如设置Ollama本地模型。

因为是本地部署的Ollama,所以不需要api秘钥,但是需要设置一个api秘钥,随便输入字符串即可。选好模型,自动保存浩即可。

设置默认模型

 然后设置默认模型,都选择deepseek-r1:1.5b

使用chat测试助手

点最左上角的“助手”图标,创建一个新助手,或者使用默认的助手,第一行能力选择模型,选已经安装好的Ollama deepseek-r1:1.5b模型,然后测试一下:

 

 测试通过,这样一个简单的助手就配置好了!

CherryStudio中使用nomic-embed-text配置本地知识库

使用文档:知识库教程 | CherryStudio

CherryStudio中添加nomic-embed-text

CherryStudio 的模型服务,在Ollama模型设置中,加入nomic-embed-text 模型

创建知识库

CherryStudio知识库中使用,在创建知识库的时候,嵌入模型选nomic-embed-text

然后,进行知识库内容的建立。

比如直接添加文件、添加目录、添加网址、添加网站、添加笔记等。

比如把水浒传上传进行embedding,整个文件较大,embedding需要等待一些时间。

在chat中使用知识库

embedding后,在chat对话中,就可以使用创建好的知识库了。

问它一下:水浒传第一个出场的人是谁?

答案并不正确。

看来还需要继续调试。

### Ollama Cherry Studio Excel 资源与教程 对于希望利用Ollama Cherry Studio处理Excel资源或创建相关应用程序的需求,当前的信息技术环境提供了多种可能性。然而,在提供的参考资料中并没有直接提及有关于如何具体操作Cherry Studio来处理Excel文件的内容。 #### 利用Cherry Studio进行开发 Cherry Studio是一个可视化界面工具,旨在简化复杂的人工智能项目部署过程[^1]。尽管官方文档社区讨论可能未特别强调针对Excel的功能支持,考虑到现代AI平台通常具备良好的扩展性兼容性,推测该软件应当能够通过插件或其他集成方式实现对Excel的支持。 为了获取详细的Excel资源整合指南以及具体的使用说明: - **访问官方网站**:建议定期查看[Cherry AI官网](https://www.cherry-ai.com/)上的最新公告支持页面,因为开发者可能会不断更新功能并发布新的教程。 - **探索GitHub仓库**:虽然DB-GPT项目主要关注数据库应用快速构建[^3],但在类似的开源平台上或许能找到由其他用户贡献的相关案例研究或第三方模块,这些都可能是宝贵的参考资料来源之一。 - **加入技术交流群组**:参与像DeepSeek这样的本地知识库解决方案所形成的社区网络[^2],与其他使用者分享经验技巧,往往能更快获得实用的操作指导。 ```python import pandas as pd from cherystudio import load_excel, process_data # 假设这是加载Excel文件的方式 df = load_excel('path/to/excel/file.xlsx') # 数据预处理示例 cleaned_df = process_data(df) print(cleaned_df.head()) ``` 此代码片段展示了假设性的Python脚本,用于展示如果存在相应的API接口时,如何读取Excel文件并对其进行初步的数据清洗工作。实际语法需参照官方文档确认。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值