一、深度可分离卷积的概念
主要应用在一些轻量化网络里,如mobilenet,它由两部分组成,depthwise(逐通道卷积)和pointwise(逐点卷积)。它相对于传统卷积的优点是:参数量和运算量都相对较低。
二、传统卷积的参数量和计算量计算
参数量:卷积核W*卷积核H*输入通道数*输出通道数
计算量:卷积核W*卷积核H*(图片W-卷积核W+2P+1)*(图片H-卷积核H+2P+1)*输入通道数*输出通道数
三、深度可分离卷积的参数量和计算量计算
逐通道卷积参数量:卷积核W*卷积核H*输入通道数
逐通道卷积计算量:卷积核W*卷积核H*(图片W-卷积核W+2P+1)*(图片H-卷积核H+2P+1)*输入通道数
逐点卷积参数量:1*1*输入通道数*输出通道数
逐点卷积计算量:1*1*(特征层W)*(特征层H)*输入通道数*输出通道数
四、对比和Reference
深度可分离卷积的参数量和计算量大致是传统的三分之一。
深度可分离卷积(Depthwise seperable convolution)_冰雪棋书的博客-CSDN博客_深度可分离卷积