LION论文阅读

一、论文主要出发点

3D目标检测的性能受限于3D卷积的局部感受野。

Transformer在3D检测领域效果很好,但由于算力限制,已有的工作在pillar内,或将voxel分组在组内进行特征交互,阻碍了他们捕捉更远程的依赖关系。

线性RNN算子的计算量随着输入序列长度线性增加,这比transformer好很多,其某些算子如Mamba和RWKV在大模型方面甚至和transformer打平。这对于将来3D检测领域统一的多模态大模型有很大的启发意义。

二、论文的主要创新点

1.在基于窗口的框架中对分组特征进行线性RNN操作,简称LION。

2.主要创新点在于3D骨干网络的设计

三、具体内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVplayer111

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值