深度学习里面的梯度消失和梯度爆炸现象

梯度消失和梯度爆炸是深度学习中常见的问题,主要由反向传播过程中链式法则的连乘效应引起。sigmoid等激活函数可能导致梯度消失,而深层网络和大权重初始化可能导致梯度爆炸。为解决这些问题,可以采取权重正则化、使用ReLU激活函数、应用批量归一化(BN)以及引入残差网络。权重正则化限制权重大小,BN则通过规范化输出缓解影响。这些方法有助于稳定网络训练,提高模型性能。
摘要由CSDN通过智能技术生成

一、为什么会发生梯度消失或者梯度爆炸

目前优化神经网络的方法一般都是BP,根据损失函数计算的误差通过梯度进行反向传播,来修正神经网络参数。反向传播要用链式法则,就是连乘,梯度将以指数形式传播很容易导致消失和爆炸。

梯度消失:如果神经网络层数比较深,或者激活函数选择不合适,如sigmoid,它的梯度都小于0.25,会导致梯度消失。

梯度爆炸:如果神经网络层数比较深,或初始化权重值比较大,都会导致梯度爆炸。

二、如何解决

1.权重正则化,通过对网络权重做正则化来防止其过拟合,通过正则化项来限制网络权重大小,可以一定程度防止网络爆炸。如L1和L2

2.选择Relu这种激活函数,他的导数在正数区域恒为1.

3.BN,对输出进行规范化,消除了权重参数放大缩小带来的影响,进而解决了梯度消失和爆炸的影响。

4.加入残差网络

反向传播时的梯度和W权重和X数据都有关,权重正则化解决W,BN解决X。

三、Reference

深度学习中梯度消失和梯度爆炸的根本原因及其缓解方法_jiangtao129的博客-CSDN博客_relu 梯度爆炸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVplayer111

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值