神经网络权重初始化方法

一、随机初始化

W=0.01*np.random.randn(Din,Dout)

生成一个服从标准正态分布的初始值。

pytorch实现:

torch.nn.init.uniform(tensor, a=0, b=1)

从均匀分布U(a, b)中生成值,填充输入的张量或变量

torch.nn.init.normal(tensor, mean=0, std=1)

从给定均值和标准差的正态分布N(mean, std)中生成值,填充输入的张量或变量

二、Xavier初始化

Xavier初始化通过保持输入和输出的方差一致(服从相同的分布)避免梯度消失和梯度爆炸问题

W=np.random.randn(Din,Dout)/np.sqrt(Din)

适用于tanh激活函数

pytorch实现:

 

fan_in = kernel_size[0] * kernel_size[1] * in_channels
fan_out = kernel_size[0] * kernel_size[1] * out_channels

三、He Kaiming 初始化

ReLU网络每一层有一半的神经元被激活,另一半为0(x负半轴中是不激活的),所以要保持variance不变,只需要在Xavier的基础上再除以2。

W=np.random.randn(Din,Dout)/np.sqrt(Din/2)

适用于Relu激活函数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVplayer111

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值