Q:使用SDR+SA+CVX出现性能下降问题
A:
使用SDR和SA将问题松弛为一个凸优化问题,然后用cvx求解该凸优化问题参考该博客式(2)
SA的松弛点也即原始优化问题的一个可行解,也即该凸优化问题的一个可行解,理论上来说优化结果是会优于该松弛点对应的可行解的,但实践中使用matlab的cvx工具箱求解时,往往会出现首次使用cvx求出一个更差的解的现象。
这是由于松弛点对应的半正定矩阵使用向量乘以自身的转置得到的(不满秩),因此理论上有多个0特征值。在cvx求解器中可能会将0特征值识别为负特征值,导致迭代起点的半正定矩阵不在可行域内。加上一个很小的单位向量可以解决这个问题。