算法笔记(六)多尺度特征融合之FPN/PANet

前言

最近论文快deadline了,一直没空更新…今天复习一下多尺度特征融合的常用操作。

1. FPN 特征金字塔

论文:feature pyramid networks for object detection 论文链接

设计思路:

  • 底层的特征语义信息比较少,但是目标位置准确。
  • 高层的特征语义信息比较丰富,但是目标位置比较粗略。

模型设计:自底向上Bottom-up,自顶向下Top-down,横向连接Lateral connection。
在这里插入图片描述

  • 自底向上:特征图随着左半部分的网络的加深,尺寸会不断变小,语义信息会更加丰富,这里是将每个stage(尺寸不变的网络集合为一个stage)的最后一个特征图构成特征金字塔。
  • 自顶向下:通过upsampling的方法,不断放大特征图,使得低层特征也包含丰富的语义信息。
  • 横向连接:将上采样的结果和自底向上生成的相同大小的特征图进行融合。即:从左边过来的特征图,先经过1*1的卷积操作,然后与上面下来的特征图相加(element-wise addition),之后再经过3*3的卷积能得到本层的特征输出(消除上采样产生的混叠效应aliasing effect:插值生成的图像灰度不连续,在灰度变化的地方可能出现明显的锯齿状)。

FPN+RPN

原先的RPN网络,输入的是经过主干网络提取的特征图(单尺度),设置的anchor有3种尺寸,3种宽高比,故有9种anchor:

加入了FPN后,RPN的输入是多尺度特征图,也就是每一层特征图后连接一个RPN head,因为已经有多尺度特征图了,就不需要设置另外3种尺寸,故有15种anchor:

FPN+ROI

ROI的作用是将输入的(检测框,整特征图)进行pooling,得到相同尺寸的目标特征图。使用了FPN之后,就有了多尺度特征图,考虑到实际目标有大有小,所以使用下公式判断将哪一层的特征图输入到ROI中:
k = ⌊ k 0 + l o g 2 ( w ∗ h 224 ) ⌋ k=\lfloor{k_0+log_2(\frac{\sqrt{w*h}}{224})}\rfloor k=k0+log2(224wh )
其中, k k k代表特征图的层数编号。

2. PANet

Pyramid Attention Networks for Image Restoration
论文地址

PANet是FPN(图a)的拓展,PANet创新点在于:

  1. 加入了自底向上路线增强;
  2. 加入了自适应特征池化。
  • Bottom-up Path Augmentation
    可以看到图(a)的FPN是自顶向下路线,通过侧向连接,将高层的强语义特征传递下来,只增强了特征金字塔的语义信息。例如,当底层特征到到P5时(红线),中间经过非常多层的网络(100+),此时底层的目标信息已经非常模糊了,因此扩展了FPN,加入了自底向上的路线(绿色路线,底层->P2->N2~N5,其中经过的路径少于10层),弥补并加强了定位信息。

  • Adaptive Feature Pooling
    前文中,使用FPN+ROI的方法是使用公式来选择FPN的特征图(P2~P5)的其中之一(例如小尺寸选择P2,大尺寸选择了P5)作为ROI的输入,而这种方法实际上也是单层的特征图。在这里,作者对多个特征图(N2~N5)和目标框进行ROI,然后对多个ROI结果(4个),分别经过全连接(fc1)后,再进行融合(sum、max、product等),如图所示:

参考

https://zhuanlan.zhihu.com/p/62604038

### 特征金字塔网络 (FPN)PANet 的代码实现 #### FPN 实现 FPN 是一种用于多尺度目标检测的有效结构,它通过自底向上的路径增强特征图的质量。以下是基于 PyTorch 的简单 FPN 实现: ```python import torch.nn as nn import torch class FPN(nn.Module): def __init__(self, in_channels_list, out_channels): super(FPN, self).__init__() self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for i in range(len(in_channels_list)): lateral_conv = nn.Conv2d(in_channels_list[i], out_channels, kernel_size=1) fpn_conv = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.lateral_convs.append(lateral_conv) self.fpn_convs.append(fpn_conv) def forward(self, inputs): laterals = [lateral_conv(inputs[i]) for i, lateral_conv in enumerate(self.lateral_convs)] used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] += nn.functional.interpolate( laterals[i], size=prev_shape, mode='nearest') outs = [ self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels) ] return tuple(outs) ``` 此代码展示了如何构建一个简单的 FPN 结构[^1]。 #### Path Aggregation Network (PANet) 实现 PANet 进一步优化了 FPN,在其基础上增加了额外的自顶向下路径聚合模块,提高了低层特征的信息传递效率。下面是 PANet 的简化版本实现: ```python class PANet(nn.Module): def __init__(self, in_channels_list, out_channels): super(PANet, self).__init__() self.fpn = FPN(in_channels_list, out_channels) self.downsample_convs = nn.ModuleList([ nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1) ]) def forward(self, inputs): fpn_outs = list(self.fpn(inputs)) pan_outs = [] last_inner = fpn_outs[-1] for idx in reversed(range(len(fpn_outs))): if idx != len(fpn_outs)-1: last_inner = fpn_outs[idx] + nn.functional.interpolate(last_inner, scale_factor=2, mode="nearest") pan_outs.insert(0, self.downsample_convs[idx](last_inner)) return tuple(pan_outs) ``` 上述代码片段展示了一个基本版的 PANet 构建方式[^2]。 对于更完整的实现细节以及具体的应用案例,建议参考开源项目中的官方实现[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nooobme

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值