DeepSpeed Huggingface模型的自动Tensor并行、kernel注入、训练阶段的优化版kernel

推理阶段。

在后台,1. DeepSpeed会把运行高性能kernel(kernel injection),加快推理速度,这些对用户是透明的; 2. DeepSpeed会根据mp_size来将模型放置在多个GPU卡上,自动模型并行

import os
import torch
import transformers
import deepspeed
local_rank = int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
# create the model pipeline
pipe = transformers.pipeline(task="text2text-generation", model="google/t5-v1_1-small", device=local_rank)
# Initialize the DeepSpeed-Inference engine
pipe.model = deepspeed.init_inference(
    pipe.model,
    mp_size=world_size,
    dtype=torch.float
)
output = pipe('Input String')

Train好的模型,即使没有用Model并行,或mp_size是另一个数,DeepSpeed支持推理时改变mp_size

量化推理:dtype支持torch.int8

 新版推理:</

PyOpenCL 是一个用来访问 OpenCL 的 Python 模块,可以用来加速 Torch 训练模型的速度。以下是一些利用 PyOpenCL 加速 Torch 训练模型的方法: 1. 使用 PyTorch 的 PyOpenCL 后端 PyTorch 提供了一个名为 PyOpenCL 的后端,可以将模型转换为 OpenCL 核心,从而加速模型训练。要使用 PyOpenCL 后端,只需要在 PyTorch 中导入 PyOpenCL 并将模型放到 PyOpenCL 设备上即可。 ```python import torch import pyopencl as cl # Use PyOpenCL backend torch.backends.opencl.is_available() torch.backends.opencl.initialize() # Create a PyTorch tensor on a PyOpenCL device device = torch.device("opencl:0") x = torch.randn(10, 10, device=device) ``` 2. 使用 PyOpenCL 的并行计算能力 PyOpenCL 提供了一个名为 Context 的类,可以用来管理 OpenCL 设备和上下文。通过使用 Context,可以实现并行计算,从而加速模型训练。 ```python import pyopencl as cl # Create a PyOpenCL context and queue platform = cl.get_platforms()[0] device = platform.get_devices()[0] context = cl.Context([device]) queue = cl.CommandQueue(context) # Create PyOpenCL buffers for input and output data input_data = cl.Buffer(context, cl.mem_flags.READ_ONLY, size=input_size) output_data = cl.Buffer(context, cl.mem_flags.WRITE_ONLY, size=output_size) # Enqueue a PyOpenCL kernel kernel = """ __kernel void my_kernel(__global float* input, __global float* output) { int i = get_global_id(0); output[i] = input[i] * 2; } """ program = cl.Program(context, kernel).build() program.my_kernel(queue, (num_elements,), None, input_data, output_data) # Read the output data from the PyOpenCL buffer output = np.empty(num_elements, dtype=np.float32) cl.enqueue_copy(queue, output, output_data) ``` 3. 使用 PyOpenCL 的内存管理功能 PyOpenCL 提供了一个名为 MemoryPool 的类,可以用来管理内存分配,从而减少内存分配和释放的开销。通过使用 MemoryPool,可以进一步加快模型训练的速度。 ```python import pyopencl as cl import pyopencl.tools as cltools # Create a PyOpenCL memory pool mem_pool = cltools.MemoryPool() # Create a PyOpenCL buffer using the memory pool input_data = cl.Buffer(context, cl.mem_flags.READ_ONLY, size=input_size, allocator=mem_pool.allocate) # Enqueue a PyOpenCL kernel using the memory pool program.my_kernel(queue, (num_elements,), None, input_data, output_data, allocator=mem_pool.allocate) # Release the PyOpenCL memory pool mem_pool.release() ``` 通过以上三种方法,可以利用 PyOpenCL 加速 Torch 训练模型的速度。需要注意的是,PyOpenCL 的使用需要一定的 OpenCL 知识,需要对 OpenCL 的编程模型和内存管理有一定的了解。同时,PyOpenCL 的性能也会受到硬件设备的限制,需要根据实际情况进行优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值