数理逻辑4 -- 公理化集合论13

本文深入探讨了数理逻辑中的Hartog定理,证明了对任意集合存在不与其任何子集等势的序数。通过一系列引理和定义,阐述了Hartog函数、初始序数的概念,并展示了它们在序数理论中的重要作用。内容涉及序数的性质、无限集合以及集合论的基础知识。
摘要由CSDN通过智能技术生成

关于有限集,再来一些练习。

引理4.13.1(Tarski,1925):我们说 X X Y 的最小值,当且仅当,

XY(y)(yY¬(yX)) X ∈ Y ∧ ( ∀ y ) ( y ∈ Y ⇒ ¬ ( y ⊂ X ) )
,也即 X X Y 的“最小集合”。那么,一个集合 Z Z 是有限的,当且仅当,任意 Z 子集所组成的非空集合存在最小值。

证明:从左往右是不难的,还是采用超序归纳法的套路。记集合

W={ u|uω(z)(f)[ufz(Y)(x)(y)(YP(z)Y(yY¬(yx)))]} W = { u | u ∈ ω ∧ ( ∀ z ) ( ∀ f ) [ u ≅ f z ⇒ ( ∀ Y ) ( ∃ x ) ( ∀ y ) ( Y ⊆ P ( z ) ∧ Y ≠ ∅ ⇒ ( y ∈ Y ⇒ ¬ ( y ⊂ x ) ) ) ] }

上面的式子看似复杂,其实还是老套路,把 Fin(z) F i n ( z ) 写成 zfu z ≅ f u 。那么,现在来证明 ωW ω ⊆ W 。首先,空集不符合题设的定义,因此它显然在 W W 内。然后,假设 α W ,考虑 α α ′ 。类似的,若 fα=w f ′ α = w ,则记 z1=z{ w} z 1 = z − { w } 。根据归纳假设, P(z1) P ( z 1 ) 的任意非空子集都有最小值,考虑 P(z) P ( z ) 的非空子集。注意到, P(z)=P(z1)V P ( z ) = P ( z 1 ) ∪ V ,其中 V={ v|(s)(sP(z1)v=s{ w})} V = { v | ( ∃ s ) ( s ∈ P ( z 1 ) ∧ v = s ∪ { w } ) } ,即 V V 是由 w P(z1) P ( z 1 ) 子集相并所组成。因此,考虑 P(z) P ( z ) 中的某一个非空子集 Y Y ,有三种情况:

(1) Y P ( z 1 ) 。根据归纳假设, Y Y 有最小值。

(2) Y V 。注意到, Y Y 中的每个成员 y 都由 w w P ( z 1 ) 的某个成员相并而成,即 y={ w}y1y1P(z1) y = { w } ∪ y 1 ∧ y 1 ∈ P ( z 1 ) 。而且, wy1 w ∉ y 1 。所以,“自然的”,构造集合 Y2={ y1|y1P(z1)({ w}y1)Y} Y 2 = { y 1 | y 1 ∈ P ( z 1 ) ∧ ( { w } ∪ y 1 ) ∈ Y } ,也即 Y2 Y 2 的成员是 Y Y 中成员“踢掉了” w 。根据归纳假设, Y2 Y 2 有最小值,记为 y2 y 2 ,则不难证明 y2{ w}Y y 2 ∪ { w } ∈ Y Y Y 的最小值。

(3) Y = Y 3 Y 4 ,且 Y3P(z1) Y 3 ⊆ P ( z 1 ) Y4V Y 4 ⊆ V 。规矩归纳假设, Y3 Y 3 有最小值 y3 y 3 。根据上述(2)的结果, Y4 Y 4 有最小值 y4 y 4 。那么, y3 y 3 y4 y 4 至少有一个是 Y Y 的最小值。这就完成了从左往右的证明。

从右往左,若集合 Z 子集的任意非空集合都有最小值,假设 Inf(Z) I n f ( Z ) 。那么,令 Y={ y|yZInf(y)} Y = { y | y ⊆ Z ∧ I n f ( y ) } ,即 Y Y Z 中所有无限子集的集合,我们证明 Y Y 中没有最小值,从而产生矛盾。假设 Y 有最小值,记为 y1 y 1 。显然, y1 y 1 ≠ ∅ ,否则就与 Inf(y1) I n f ( y 1 ) 矛盾。所以,存在 c c 使得 c y 1 。令 y2=y1{ c} y 2 = y 1 − { c } ,则 y2y1 y 2 ⊂ y 1 , 并且 ¬Fin(y2) ¬ F i n ( y 2 ) ,否则的话 Fin(y2)Fin(y2{ c})Fin(y1) F i n ( y 2 ) ⇒ F i n ( y 2 ∪ { c } ) ⇒ F i n ( y 1 ) 。所以, y2Y y 2 ∈ Y , 与 y1 y 1 是最小值而矛盾。

引理4.13.2
a. Fin(X)Den(Y)Den(XY) ⊢ F i n ( X ) ∧ D e n ( Y ) ⇒ D e n ( X ∪ Y )
b. Fin(X)Den(Y)XDen(X×Y)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值