K-means聚类算法

在聚类问题中,给我们的训练样本是 clip_image004,每个 clip_image006,没有了y。

     K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:

1、 随机选取k个聚类质心点(cluster centroids)为clip_image008[6]

2、 重复下面过程直到收敛 {

               对于每一个样例i,计算其应该属于的类

               clip_image009

               对于每一个类j,重新计算该类的质心

               clip_image010[6]

}

     K是我们事先给定的聚类数,clip_image012[6]代表样例i与k个类中距离最近的那个类,clip_image012[7]的值是1到k中的一个。质心clip_image014[6]代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为clip_image012[8],这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心clip_image014[7](对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。

下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

     clip_image015

     K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下:

     clip_image016[6]

     J函数表示每个样本点到其质心的距离平方和。K-means是要将J调整到最小。假设当前J没有达到最小值,那么首先可以固定每个类的质心clip_image014[8],调整每个样例的所属的类别clip_image012[9]来让J函数减少,同样,固定clip_image012[10],调整每个类的质心clip_image014[9]也可以使J减小。这两个过程就是内循环中使J单调递减的过程。当J递减到最小时,clip_image018[6]和c也同时收敛。(在理论上,可以有多组不同的clip_image018[7]和c值能够使得J取得最小值,但这种现象实际上很少见)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值