仅凭单个雷达在人群中稳定飞行!T-RO最新无人机避障算法FAPP

导读: 在无人机(UAV)领域,复杂动态环境下的障碍物避让是一个巨大的挑战。传统的障碍物避让技术大多只适用于静态环境或少数动态物体的环境。然而,当环境中动态物体成为主导时,无人机的感知和规划任务变得更加困难。动态物体的多样化运动轨迹使得使用单一运动模型预测其运动变得极为复杂。 为了应对这一挑战,本文提出了一种名为“快速与自适应感知规划”(FAPP)的新策略,用于在复杂动态环境中指导无人机飞行。作者开发了一种新颖且高效的点云分割技术,能够区分静态和动态物体。此外,本文还提出了一种自适应的估算方法,通过协方差适应机制,快速且准确地预测多动态物体的运动。 通过在模拟环境和现实世界中进行广泛的测试验证,该的系统在处理高度动态和拥挤环境方面展示了显著的有效性。这一技术不仅能够提高无人机的飞行安全,还能在复杂环境中提高其运行效率和稳定性。这对于未来无人机在复杂城市环境中的应用提供了重要的技术支持。

©️【深蓝AI】编译

论文标题:FAPP: Fast and Adaptive Perception and Planning for UAVs in Dynamic Cluttered Environments

论文作者:Minghao Lu, Xiyu Fan, Han Chen, and Peng Lu

论文地址:https://arxiv.org/abs/2312.08743

论文视频:https://youtu.be/4DXBuKpqQk4

引入

机器人技术的发展一直致力于提高机器人的智能水平并将其融入人们的日常生活中。无人机(UAV)因其运动灵活性和成本效益而日益普及。近年来,空中自主技术的进步使无人机在多种智能任务中表现出色,包括导航、在静态环境中的探索以及自主摄影等。

然而,让无人机在复杂且动态拥挤的环境中无需人类指挥地飞行,仍然是一项具有挑战性且潜在危险的任务。例如,设想一架无人机被指派在繁忙的城市人行道或拥挤的室内狭小空间中进行近距离摄影。在这种情况下,无人机需要在完成任务的同时,智能地应对不断变化的环境。

目前最先进的无人机障碍物避让技术主要集中在静态环境中。动态环境在感知和路径规划方面带来了更大的挑战。动态物体,尤其是快速移动的物体,会造成运动模糊,使得传统视觉传感器难以检测到这些物体。路径规划算法必须足够高效,以避开快速移动的物体。为此,已经开发了基于事件的检测方法来应对快速移动的物体。然而,事件相机价格昂贵,对于低成本的无人机来说并不经济。因此,无人机在动态环境中的导航挑战仍然存在。近期,虽然有几种方法被提出用于解决无人机的动态障碍物问题,但所有这些研究都仅考虑了环境静态且仅存在少数(一两个)动态物体的情况。它们要么使用恒定速度或加速度模型来估计和预测物体的运动,要么让物体以恒定速度移动。这些研究并未探讨估计的速度是否足够快或精确,以及这对成功避开动态障碍的影响。

本文考虑了一种更为复杂的环境:动态拥挤环境,其中动态物体是环境中的主要对象。这种环境会加剧感知和规划的难度。在感知方面,检测和跟踪多个物体比检测单个物体更加具有挑战性。在动态障碍物避让方面,有必要估计和预测物体的速度。由于不同物体具有不同的运动模型,这也变得更加困难。使用单一模型来估计不同物体的运动是不容易的。在路径规划方面,多个物体增加了碰撞的概率,进一步增加了挑战。此外,在动态拥挤的环境中&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值