📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)
📝 职场经验干货:
引言
在软件开发过程中,测试是确保产品质量的关键环节。然而,编写全面且有效的测试用例往往是一项耗时且需要专业知识的工作。随着人工智能技术的发展,我们现在可以利用 Autogen 智能体来自动化测试用例的生成过程,大大提高测试效率和质量。本文将带领读者从新手到入门,了解如何使用 Autogen 智能体生成测试用例,以及如何启动和部署相关项目。
Autogen 智能体简介
Autogen 是微软研究院开发的一个框架,它允许开发者通过定义和编排多个智能体来解决复杂问题。在测试场景中,Autogen 智能体可以扮演测试专家的角色,根据功能需求自动生成结构化的测试用例。
Autogen 智能体的核心优势包括:
- 自动化测试用例生成
:根据需求描述自动生成全面的测试用例
- 多样化测试覆盖
:包括正常流程、边界情况和负面测试
- 结构化输出
:生成格式一致、易于理解的测试文档
- 可定制性
:根据不同的测试级别和优先级调整测试策略
从新手到入门:理解测试用例生成
测试用例的基本组成
在深入了解 Autogen 智能体之前,让我们先明确一个好的测试用例应包含的要素:
- 唯一标识符
:每个测试用例都应有独特的 ID
- 测试目标
:测试用例要验证的功能点
- 前置条件
:执行测试所需的环境和条件
- 测试步骤
:详细的操作步骤
- 预期结果
:测试成功的判定标准
- 测试数据
:测试中使用的输入数据
- 测试级别
:单元测试、集成测试、系统测试或验收测试
- 优先级
:高、中、低,指示测试执行的优先顺序
Autogen 智能体如何生成测试用例
Autogen 智能体通过以下步骤生成测试用例:
- 需求分析
:智能体首先分析提供的需求描述,识别关键功能点和约束条件
- 测试场景识别
:根据需求识别可能的测试场景,包括正常流程和异常情况
- 测试用例构建
:为每个场景构建结构化的测试用例,包括步骤和预期结果
- 边界条件考虑
:特别关注边界值和极限情况
- 负面测试设计
:设计验证系统对错误输入的处理能力的测试
- 格式化输出
:以清晰、一致的格式输出测试用例
启动 Autogen 智能体测试用例生成项目
环境准备
要启动 Autogen 智能体测试用例生成项目,需要准备以下环境:
- Python 环境
:建议使用 Python 3.8 或更高版本
- 必要的库
:
-
autogen-agentchat:Autogen 智能体框架
-
streamlit:用于构建 Web 界面
-
asyncio:处理异步操作
-
适当的 LLM 客户端:连接到语言模型服务
-
安装依赖
pip install pyautogen streamlit asyncio
项目结构
一个基本的 Autogen 智能体测试用例生成项目通常包含以下文件:
project/
├── app.py # 主应用程序(Streamlit 界面)
├── llms.py # LLM 客户端配置
├── testcase_tasks.py # 测试用例生成任务定义
└── requirements.txt # 项目依赖
配置 LLM 客户端
在 llms.py 中配置与语言模型的连接:
llms.py 示例
from autogen_ext.models.openai import OpenAIChatCompletionClient
model_client = OpenAIChatCompletionClient(
model="deepseek-ai/DeepSeek-V3",
base_url="https://api.siliconflow.cn/v1",
api_key="sk-",
model_info={
"vision": False,
"function_calling": True,
"json_output": True,
"family": "unknown",
},
)
安装依赖包
执行命令 pip install -r requirements.txt
asyncio
autogen_ext==0.4.8
autogen-agentchat==0.4.8
autogen-ext[openai]
streamlit==1.43.0
定义测试用例生成任务
在 testcase_tasks.py 中定义测试用例生成器的系统消息:
# testcase_tasks.py 示例
TESTCASE_WRITER_SYSTEM_MESSAGE = """
你是一位专业的测试用例编写专家,能够根据需求精确生成高质量的测试用例。
重要规则:
1. 严格按照用户指定的测试用例数量生成,不多不少
2. 确保每个用例ID唯一,避免重复
3. 采用清晰的Markdown格式输出
4. 确保测试用例覆盖关键功能路径和边界条件
5. 如果需求中没有明确指定测试用例数量,则默认生成3-5条核心测试用例
输出格式:
```markdown
## 测试用例集
### 用例ID:[模块]_[功能]_[序号]
**优先级**:P0/P1/P2/P3
**标题**:简明描述测试目的
**前置条件**:
- 条件1
- 条件2
**步骤**:
1. 第一步
2. 第二步
**预期结果**:
- 具体的预期结果
[重复上述模板直到达到指定的用例数量]
## 总结
- 测试覆盖度:描述测试覆盖的方面
- 建议:任何关于测试执行的建议
"""
构建 Web 界面
使用 Streamlit 构建一个用户友好的 Web 界面:ui.py
# -*- conding: utf-8 -*-
import asyncio
import re
import streamlit as st
from autogen_agentchat.agents import AssistantAgent
from llms import model_client
from testcase_tasks import TESTCASE_WRITER_SYSTEM_MESSAGE
# 设置页面配置
st.set_page_config(
page_title="测试用例生成器",
page_icon="✅",
layout="wide"
)
# 页面标题
st.title("\U0001F9EA AI 测试用例生成器")
st.markdown("输入你的需求描述,AI 将为你生成相应的测试用例")
# 创建测试用例生成器代理
@st.cache_resource
def get_testcase_writer():
return AssistantAgent(
name="testcase_writer",
model_client=model_client,
system_message=TESTCASE_WRITER_SYSTEM_MESSAGE,
model_client_stream=True,
)
testcase_writer = get_testcase_writer()
# 用户输入区域
user_input = st.text_area(
"需求描述",
height=200,
placeholder="请详细描述你的功能需求,例如:\n开发一个用户注册功能,要求用户提供用户名、密码和电子邮件。用户名长度为3-20个字符,密码长度至少为8个字符且必须包含数字和字母,电子邮件必须是有效格式。"
)
# 高级选项(可折叠)
with st.expander("高级选项"):
test_level = st.selectbox(
"测试级别",
["单元测试", "集成测试", "系统测试", "验收测试"],
index=0
)
test_priority = st.selectbox(
"测试优先级",
["高", "中", "低"],
index=1
)
# 添加测试用例数量控制
test_case_count = st.number_input(
"生成测试用例数量",
min_value=1,
max_value=20,
value=3,
step=1,
help="指定需要生成的测试用例数量"
)
include_edge_cases = st.checkbox("包含边界情况", value=True)
include_negative_tests = st.checkbox("包含负面测试", value=True)
# 提交按钮
submit_button = st.button("生成测试用例")
# 验证和格式化测试用例函数
def validate_and_format_testcases(raw_output, expected_count):
"""验证测试用例数量并格式化输出"""
# 查找所有测试用例ID
case_ids = re.findall(r'(用例ID|test case ID)[::]\s*([A-Z_0-9]+)', raw_output, re.IGNORECASE)
# 构建格式化输出
formatted_output = raw_output
# 检查用例数量
if len(case_ids) != expected_count:
warning = f"\n\n> ⚠️ **警告**: 生成了 {len(case_ids)} 条测试用例,但要求是 {expected_count} 条。"
formatted_output += warning
# 检查是否有重复ID
unique_ids = set([id[1] for id in case_ids])
if len(unique_ids) != len(case_ids):
warning = "\n\n> ⚠️ **警告**: 存在重复的测试用例ID,请检查。"
formatted_output += warning
return formatted_output
# 处理提交
if submit_button and user_input:
# 准备任务描述
task = f"""
需求描述: {user_input}
测试级别: {test_level}
测试优先级: {test_priority}
包含边界情况: {'是' if include_edge_cases else '否'}
包含负面测试: {'是' if include_negative_tests else '否'}
【重要】请严格生成 {test_case_count} 条测试用例,不多不少。每个用例ID必须唯一。
请根据以上需求生成结构化的测试用例,使用清晰的Markdown格式。
"""
# 创建一个固定的容器用于显示生成内容
response_container = st.container()
# 定义一个异步函数来处理流式输出
async def generate_testcases():
full_response = ""
# 创建一个空元素用于更新内容
with response_container:
placeholder = st.empty()
async for chunk in testcase_writer.run_stream(task=task):
if chunk:
# 处理不同类型的chunk
if hasattr(chunk, 'content'):
content = chunk.content
elif isinstance(chunk, str):
content = chunk
else:
content = str(chunk)
# 将新内容添加到完整响应中
full_response += content
# 更新显示区域(替换而非追加)
placeholder.markdown(full_response)
# 在完成生成后验证和格式化输出
formatted_response = validate_and_format_testcases(full_response, test_case_count)
placeholder.markdown(formatted_response)
return formatted_response
try:
# 显示生成中状态
with st.spinner("正在生成测试用例..."):
# 执行异步函数
result = asyncio.run(generate_testcases())
# 生成完成后显示成功消息(在容器外部)
st.success("✅ 测试用例生成完成!")
# 添加下载按钮
st.download_button(
label="下载测试用例",
data=result,
file_name="测试用例.md",
mime="text/markdown",
)
except Exception as e:
st.error(f"生成测试用例时出错: {str(e)}")
# 尝试使用非流式API作为备选方案
try:
with st.spinner("正在尝试替代方法..."):
response = testcase_writer.run(task=task)
if response:
# 验证和格式化非流式输出
formatted_response = validate_and_format_testcases(response, test_case_count)
with response_container:
st.markdown(formatted_response)
st.success("✅ 测试用例生成完成!")
st.download_button(
label="下载测试用例",
data=formatted_response,
file_name="测试用例.md",
mime="text/markdown",
)
except Exception as e2:
st.error(f"替代方法也失败: {str(e2)}")
elif submit_button and not user_input:
st.error("请输入需求描述")
# 添加使用说明
with st.sidebar:
st.header("使用说明")
st.markdown("""
1. 在文本框中输入详细的需求描述
2. 根据需要调整高级选项和测试用例数量
3. 点击"生成测试用例"按钮
4. 等待AI生成测试用例
5. 可以下载生成的测试用例
""")
st.header("关于")
st.markdown("""
本工具使用AI技术自动生成测试用例,帮助开发和测试团队提高效率。
生成的测试用例包括:
- 测试场景
- 测试步骤
- 预期结果
- 测试数据建议
""")
启动项目
完成上述配置后,可以通过以下命令启动项目:
streamlit run ui.py
这将启动一个本地 Web 服务器,通常在 http://localhost:8501 上运行。
最佳实践
提供详细的需求描述
为了获得高质量的测试用例,需要提供尽可能详细的需求描述,包括:
1.功能目标: 功能的主要目的
2.业务规则: 与功能相关的业务规则和约束
3.输入验证: 输入字段的验证规则
4.错误处理: 系统应如何处理异常情况
5.性能要求: 如响应时间、并发用户数等
测试用例数量控制
根据功能复杂度合理设置测试用例数量:
-
简单功能:3-5 个测试用例
-
中等复杂度:5-10 个测试用例
-
复杂功能:10-20 个测试用例
测试级别选择
根据开发阶段选择适当的测试级别:
-
开发初期:单元测试
-
模块集成:集成测试
-
系统部署前:系统测试
-
用户验收前:验收测试
结论
Autogen 智能体为测试用例生成提供了一种高效且智能的方法。通过本文介绍的步骤,从新手到入门级用户都可以快速搭建和使用 Autogen 智能体测试用例生成系统。随着项目的深入,可以进一步定制和优化系统,以满足特定的测试需求。
测试用例生成只是 Autogen 智能体应用的一个方面。随着技术的发展,我们可以期待更多智能化测试工具的出现,进一步提升软件测试的效率和质量。
通过合理利用 Autogen 智能体,测试团队可以将更多精力集中在测试策略和复杂场景的设计上,而将常规测试用例的编写工作交给 AI,从而实现设计测试用例提效
最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】