带你开发智能体:生成测试用例从小白到高手的进阶指南

📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)

📝 职场经验干货:

软件测试工程师简历上如何编写个人信息(一周8个面试)

软件测试工程师简历上如何编写专业技能(一周8个面试)

软件测试工程师简历上如何编写项目经验(一周8个面试)

软件测试工程师简历上如何编写个人荣誉(一周8个面试)

软件测试行情分享(这些都不了解就别贸然冲了.)

软件测试面试重点,搞清楚这些轻松拿到年薪30W+

软件测试面试刷题小程序免费使用(永久使用)


引言

在软件开发过程中,测试是确保产品质量的关键环节。然而,编写全面且有效的测试用例往往是一项耗时且需要专业知识的工作。随着人工智能技术的发展,我们现在可以利用 Autogen 智能体来自动化测试用例的生成过程,大大提高测试效率和质量。本文将带领读者从新手到入门,了解如何使用 Autogen 智能体生成测试用例,以及如何启动和部署相关项目。

Autogen 智能体简介

Autogen 是微软研究院开发的一个框架,它允许开发者通过定义和编排多个智能体来解决复杂问题。在测试场景中,Autogen 智能体可以扮演测试专家的角色,根据功能需求自动生成结构化的测试用例。

Autogen 智能体的核心优势包括:

  1. 自动化测试用例生成

    :根据需求描述自动生成全面的测试用例

  2. 多样化测试覆盖

    :包括正常流程、边界情况和负面测试

  3. 结构化输出

    :生成格式一致、易于理解的测试文档

  4. 可定制性

    :根据不同的测试级别和优先级调整测试策略

从新手到入门:理解测试用例生成

测试用例的基本组成

在深入了解 Autogen 智能体之前,让我们先明确一个好的测试用例应包含的要素:

  1. 唯一标识符

    :每个测试用例都应有独特的 ID

  2. 测试目标

    :测试用例要验证的功能点

  3. 前置条件

    :执行测试所需的环境和条件

  4. 测试步骤

    :详细的操作步骤

  5. 预期结果

    :测试成功的判定标准

  6. 测试数据

    :测试中使用的输入数据

  7. 测试级别

    :单元测试、集成测试、系统测试或验收测试

  8. 优先级

    :高、中、低,指示测试执行的优先顺序

Autogen 智能体如何生成测试用例

Autogen 智能体通过以下步骤生成测试用例:

  1. 需求分析

    :智能体首先分析提供的需求描述,识别关键功能点和约束条件

  2. 测试场景识别

    :根据需求识别可能的测试场景,包括正常流程和异常情况

  3. 测试用例构建

    :为每个场景构建结构化的测试用例,包括步骤和预期结果

  4. 边界条件考虑

    :特别关注边界值和极限情况

  5. 负面测试设计

    :设计验证系统对错误输入的处理能力的测试

  6. 格式化输出

    :以清晰、一致的格式输出测试用例

启动 Autogen 智能体测试用例生成项目

环境准备

要启动 Autogen 智能体测试用例生成项目,需要准备以下环境:

  1. Python 环境

    :建议使用 Python 3.8 或更高版本

  2. 必要的库

    • autogen-agentchat:Autogen 智能体框架

    • streamlit:用于构建 Web 界面

    • asyncio:处理异步操作

    • 适当的 LLM 客户端:连接到语言模型服务

安装依赖

pip install pyautogen streamlit asyncio

项目结构

一个基本的 Autogen 智能体测试用例生成项目通常包含以下文件:​​​​​​

project/
├── app.py                  # 主应用程序(Streamlit 界面)
├── llms.py                 # LLM 客户端配置
├── testcase_tasks.py       # 测试用例生成任务定义
└── requirements.txt        # 项目依赖

配置 LLM 客户端

在 llms.py 中配置与语言模型的连接:

llms.py 示例

from autogen_ext.models.openai import OpenAIChatCompletionClient
model_client = OpenAIChatCompletionClient(
    model="deepseek-ai/DeepSeek-V3",
    base_url="https://api.siliconflow.cn/v1",
    api_key="sk-",
    model_info={
        "vision": False,
        "function_calling": True,
        "json_output": True,
        "family": "unknown",
    },
)

安装依赖包

执行命令 pip install -r requirements.txt​​​​​​​

asyncio
autogen_ext==0.4.8
autogen-agentchat==0.4.8
autogen-ext[openai]
streamlit==1.43.0

定义测试用例生成任务

在 testcase_tasks.py 中定义测试用例生成器的系统消息:​​​​​​​

# testcase_tasks.py 示例
TESTCASE_WRITER_SYSTEM_MESSAGE = """
你是一位专业的测试用例编写专家,能够根据需求精确生成高质量的测试用例。
重要规则:
1. 严格按照用户指定的测试用例数量生成,不多不少
2. 确保每个用例ID唯一,避免重复
3. 采用清晰的Markdown格式输出
4. 确保测试用例覆盖关键功能路径和边界条件
5. 如果需求中没有明确指定测试用例数量,则默认生成3-5条核心测试用例
输出格式:
```markdown
## 测试用例集
### 用例ID:[模块]_[功能]_[序号]
**优先级**:P0/P1/P2/P3
**标题**:简明描述测试目的
**前置条件**:
- 条件1
- 条件2
**步骤**:
1. 第一步
2. 第二步
**预期结果**:
- 具体的预期结果
[重复上述模板直到达到指定的用例数量]
## 总结
- 测试覆盖度:描述测试覆盖的方面
- 建议:任何关于测试执行的建议
"""

构建 Web 界面

使用 Streamlit 构建一个用户友好的 Web 界面:ui.py​​​​​​​

# -*- conding: utf-8 -*-
import asyncio
import re
import streamlit as st
from autogen_agentchat.agents import AssistantAgent
from llms import model_client
from testcase_tasks import TESTCASE_WRITER_SYSTEM_MESSAGE
# 设置页面配置
st.set_page_config(
    page_title="测试用例生成器",
    page_icon="✅",
    layout="wide"
)
# 页面标题
st.title("\U0001F9EA AI 测试用例生成器")
st.markdown("输入你的需求描述,AI 将为你生成相应的测试用例")
# 创建测试用例生成器代理
@st.cache_resource
def get_testcase_writer():
    return AssistantAgent(
        name="testcase_writer",
        model_client=model_client,
        system_message=TESTCASE_WRITER_SYSTEM_MESSAGE,
        model_client_stream=True,
    )
testcase_writer = get_testcase_writer()
# 用户输入区域
user_input = st.text_area(
    "需求描述",
    height=200,
    placeholder="请详细描述你的功能需求,例如:\n开发一个用户注册功能,要求用户提供用户名、密码和电子邮件。用户名长度为3-20个字符,密码长度至少为8个字符且必须包含数字和字母,电子邮件必须是有效格式。"
)
# 高级选项(可折叠)
with st.expander("高级选项"):
    test_level = st.selectbox(
        "测试级别",
        ["单元测试", "集成测试", "系统测试", "验收测试"],
        index=0
    )
    test_priority = st.selectbox(
        "测试优先级",
        ["高", "中", "低"],
        index=1
    )
    # 添加测试用例数量控制
    test_case_count = st.number_input(
        "生成测试用例数量",
        min_value=1,
        max_value=20,
        value=3,
        step=1,
        help="指定需要生成的测试用例数量"
    )
    include_edge_cases = st.checkbox("包含边界情况", value=True)
    include_negative_tests = st.checkbox("包含负面测试", value=True)
# 提交按钮
submit_button = st.button("生成测试用例")
# 验证和格式化测试用例函数
def validate_and_format_testcases(raw_output, expected_count):
    """验证测试用例数量并格式化输出"""
    # 查找所有测试用例ID
    case_ids = re.findall(r'(用例ID|test case ID)[::]\s*([A-Z_0-9]+)', raw_output, re.IGNORECASE)
    # 构建格式化输出
    formatted_output = raw_output
    # 检查用例数量
    if len(case_ids) != expected_count:
        warning = f"\n\n> ⚠️ **警告**: 生成了 {len(case_ids)} 条测试用例,但要求是 {expected_count} 条。"
        formatted_output += warning
    # 检查是否有重复ID
    unique_ids = set([id[1] for id in case_ids])
    if len(unique_ids) != len(case_ids):
        warning = "\n\n> ⚠️ **警告**: 存在重复的测试用例ID,请检查。"
        formatted_output += warning
    return formatted_output
# 处理提交
if submit_button and user_input:
    # 准备任务描述
    task = f"""
    需求描述: {user_input}
    测试级别: {test_level}
    测试优先级: {test_priority}
    包含边界情况: {'是' if include_edge_cases else '否'}
    包含负面测试: {'是' if include_negative_tests else '否'}
    【重要】请严格生成 {test_case_count} 条测试用例,不多不少。每个用例ID必须唯一。
    请根据以上需求生成结构化的测试用例,使用清晰的Markdown格式。
    """
    # 创建一个固定的容器用于显示生成内容
    response_container = st.container()
    # 定义一个异步函数来处理流式输出
    async def generate_testcases():
        full_response = ""
        # 创建一个空元素用于更新内容
        with response_container:
            placeholder = st.empty()
        async for chunk in testcase_writer.run_stream(task=task):
            if chunk:
                # 处理不同类型的chunk
                if hasattr(chunk, 'content'):
                    content = chunk.content
                elif isinstance(chunk, str):
                    content = chunk
                else:
                    content = str(chunk)
                # 将新内容添加到完整响应中
                full_response += content
                # 更新显示区域(替换而非追加)
                placeholder.markdown(full_response)
        # 在完成生成后验证和格式化输出
        formatted_response = validate_and_format_testcases(full_response, test_case_count)
        placeholder.markdown(formatted_response)
        return formatted_response
    try:
        # 显示生成中状态
        with st.spinner("正在生成测试用例..."):
            # 执行异步函数
            result = asyncio.run(generate_testcases())
        # 生成完成后显示成功消息(在容器外部)
        st.success("✅ 测试用例生成完成!")
        # 添加下载按钮
        st.download_button(
            label="下载测试用例",
            data=result,
            file_name="测试用例.md",
            mime="text/markdown",
        )
    except Exception as e:
        st.error(f"生成测试用例时出错: {str(e)}")
        # 尝试使用非流式API作为备选方案
        try:
            with st.spinner("正在尝试替代方法..."):
                response = testcase_writer.run(task=task)
            if response:
                # 验证和格式化非流式输出
                formatted_response = validate_and_format_testcases(response, test_case_count)
                with response_container:
                    st.markdown(formatted_response)
                st.success("✅ 测试用例生成完成!")
                st.download_button(
                    label="下载测试用例",
                    data=formatted_response,
                    file_name="测试用例.md",
                    mime="text/markdown",
                )
        except Exception as e2:
            st.error(f"替代方法也失败: {str(e2)}")
elif submit_button and not user_input:
    st.error("请输入需求描述")
# 添加使用说明
with st.sidebar:
    st.header("使用说明")
    st.markdown("""
    1. 在文本框中输入详细的需求描述
    2. 根据需要调整高级选项和测试用例数量
    3. 点击"生成测试用例"按钮
    4. 等待AI生成测试用例
    5. 可以下载生成的测试用例
    """)
    st.header("关于")
    st.markdown("""
    本工具使用AI技术自动生成测试用例,帮助开发和测试团队提高效率。
    生成的测试用例包括:
    - 测试场景
    - 测试步骤
    - 预期结果
    - 测试数据建议
    """)

启动项目

完成上述配置后,可以通过以下命令启动项目:

streamlit run ui.py

这将启动一个本地 Web 服务器,通常在 http://localhost:8501 上运行。

最佳实践

提供详细的需求描述

为了获得高质量的测试用例,需要提供尽可能详细的需求描述,包括:

1.功能目标: 功能的主要目的

2.业务规则: 与功能相关的业务规则和约束

3.输入验证: 输入字段的验证规则

4.错误处理: 系统应如何处理异常情况

5.性能要求: 如响应时间、并发用户数等

测试用例数量控制

根据功能复杂度合理设置测试用例数量:

  • 简单功能:3-5 个测试用例

  • 中等复杂度:5-10 个测试用例

  • 复杂功能:10-20 个测试用例

测试级别选择

根据开发阶段选择适当的测试级别:

  • 开发初期:单元测试

  • 模块集成:集成测试

  • 系统部署前:系统测试

  • 用户验收前:验收测试

结论

Autogen 智能体为测试用例生成提供了一种高效且智能的方法。通过本文介绍的步骤,从新手到入门级用户都可以快速搭建和使用 Autogen 智能体测试用例生成系统。随着项目的深入,可以进一步定制和优化系统,以满足特定的测试需求。

测试用例生成只是 Autogen 智能体应用的一个方面。随着技术的发展,我们可以期待更多智能化测试工具的出现,进一步提升软件测试的效率和质量。

通过合理利用 Autogen 智能体,测试团队可以将更多精力集中在测试策略和复杂场景的设计上,而将常规测试用例的编写工作交给 AI,从而实现设计测试用例提效

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】
在这里插入图片描述​​​​
在这里插入图片描述​​​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值