ComfyUl提示词技巧

ComfyUI prompt技巧

Prompt 输入不支持中文,建议使用翻译插件或者使用翻译软件来进行翻译。 翻译插件推荐:沙拉查词(opens in a new tab)

🚧prompt 书写有什么技巧?要如何写AI绘图的prompt

在ComfyUI中如何调整提示词权重?

以下是comfyUI中调整提示词权重的方法:

1、通过英文括号并注明权重

使用(prompt:权重)

如: (1girl:1.1)

2、通过英文括号()加权

你可以使用(prompt)的方式让提示词权重提升为原来的1.1

如: (1girl)

增加权重快捷键

选中prompt后

  • 键盘 Ctrl + Up↑(方向键上) 可提升对应prompt 0.05 权重

  • 键盘 Ctrl + Down↓(方向键下) 可降低对应prompt 0.05 权重

如何让ComfyUI随机调用prompt内容?

使用{选择1|选择2|选择3|...}可以让ComfyUI随机选择一个prompt参与生图流程

如: {red|blue|green}则会从其中选择一个颜色

常用prompt 推荐

提升画质prompt
用途描述
HDR, UHD, 64K提升照片质量,增强动态范围(HDR)、超高分辨率(UHD,包括4K、8K和64K)
Highly detailed增加画面精细度,展现更多细节
Studio lighting添加专业演播室灯光效果,为图像赋予丰富纹理
Professional调整色彩对比度与细节层次,显著提升图片的专业感
Vivid Colors强化颜色鲜艳度,为图像注入生动活力
Bokeh实现背景虚化,类似iPhone人像模式,突出主体
High resolution scan高精度扫描,使照片具有复古质感,增添年代气息
Sketch将图片转化为素描风格
Painting将图片转译为绘画效果
prompt 文档推荐

元素法典一—Novel Al元素魔法全收录

<think>好的,用户想了解如何编写有效的AI提示词,包括示例和技巧。首先,我需要回顾一下已有的引用内容。引用[1]提到了明确目标、设计结构、优化技巧、调整参数和注意事项。引用[2]强调提示词需要清晰、有上下文和目的性,还提到可以用于各种任务。引用[3]则来自一位经验丰富的作者,可能包含实战技巧。 用户的问题可以分为两个部分:如何编写有效提示词,以及示例和技巧。我需要先组织结构,确保回答清晰。可能的结构是分步骤,比如明确目标、结构设计、优化技巧等,每个步骤结合引用中的要点。然后给出示例,比如不同的任务类型对应的提示词例子,再总结技巧,如避免歧义、迭代优化等。 要注意用户可能对技术术语不太熟悉,所以需要用简单的中文解释。同时,示例部分要具体,让用户能直观理解。技巧部分需要实用,比如使用分隔符、提供上下文,这些在引用中都有提到,需要整合进来。 还需要检查是否遗漏了关键点,比如引用[3]提到的实战经验,可能包括具体案例或者常见错误,但现有引用信息有限,可能需要依赖已有的内容。同时,用户希望回答真实可靠,所以需要确保每个建议都有引用支持,比如引用[1]的结构设计,引用[2]的清晰性要求。 最后,生成相关问题,可能涉及提示词的应用场景、常见错误、高级技巧等,要确保问题相关且有引导性。整个过程要保持自然,避免使用Markdown,用口语化的思考过程来组织内容。</think>### 如何编写有效的AI提示词 #### 一、核心原则与步骤 1. **明确任务目标** 用具体、简洁的语言定义需求,避免模糊表达。例如: - 无效提示词:"写关于人工智能的文章" - 有效提示词:"用通俗语言解释生成式AI的工作原理,包含技术实现路径和3个应用场景案例,800字以内"[^1] 2. **结构化设计** 使用分步指令或模板框架提升输出质量: ```text 角色设定:资深科技记者 任务目标:对比分析ChatGPT-4和Claude 3的代码生成能力 具体要求: - 列出5项评估维度 - 提供Python代码示例对比 - 给出可视化方案建议 ``` 3. **上下文优化** 添加背景信息可提升相关性: "我正在准备数据科学课程的教案,需要向本科生解释梯度下降算法。请用物理运动类比说明原理,并给出数学公式推导步骤,要求包含$f(x)=x^2$的示例计算过程。" #### 二、实用技巧与示例 | 技巧类型 | 示例说明 | 应用场景 | |-----------------|-----------------------------------|--------------------| | **角色扮演** | "你是一位有10年经验的算法工程师..." | 专业领域咨询 | | **格式约束** | "用Markdown表格呈现对比结果" | 数据整理 | | **渐进式追问** | "先列出大纲,再展开每个章节" | 长文本生成 | | **错误修正** | "上文第三点数据不准确,请重新核对" | 迭代优化 | #### 三、高级优化策略 1. **参数控制** 在提示词中指定输出参数: ```text 温度值设为0.7,生成3个不同风格的营销文案: - 专业正式版 - 轻松幽默版 - 情感共鸣版 ``` 2. **知识增强** 注入领域专业信息提升准确性: "根据2023年ACL会议论文的最新研究成果,请解释大语言模型中的注意力机制改进方案,要求包含公式推导:$$Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V$$" 3. **防御性设计** 预防常见错误: "请核对所有历史日期是否准确,数学公式必须使用$$...$$格式,代码示例需通过Python3.9环境验证" #### 四、典型案例解析 - **代码生成** ```text 角色:全栈开发专家 任务:编写Flask RESTful API接口 要求: 1. 包含JWT身份验证 2. 使用SQLAlchemy ORM 3. 添加Swagger文档支持 示例格式: ```python @app.route('/api/data', methods=['GET']) def get_data(): # 实现代码 ``` ``` - **学术写作** "根据Nature期刊格式要求,撰写关于Transformer模型在蛋白质结构预测中的应用的文献综述,包含: 1. 技术原理图示描述 2. AlphaFold2的改进路径 3. 数学公式推导:$$E=softmax(\frac{QK^T}{\sqrt{d_k}})V$$" 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值