4. ComfyUI提示词规则学习

在学习Stable Diffusion提示词之前我们首先要明白一点,即Stable Diffusion和大语言模型是不同的,它对自然语言的理解能力是不如大语言模型的。

1. 基础规则

(1)英文书写

ComfyUI的提示词必须采用英文书写(英文提示词及标点符号),因为其采用的文本编码模式是CLIP是基于英文数据集训练的。

(2)使用词组

前面已经提到Stable Diffusion与大语言模型是不同的,使用词组的方式进行输入模型更能理解,也便于后续调整词组权重。

(3)词组大小

提示词的数量并不是越多越好,根据经验将提示词控制在75个以内效果会更好。

(4)提示词权重

提示词权重就是该提示词在生成的图片中其对应部分的权重大小。(权重越高在图片中体现会更好)

2. ComfyUI提示词权重规则和语法

(1)基本规则

  1. 提示词越靠前、权重越高。
  2. 权重可以无限低,但是不能过高。(易导致过拟合)

(2)权重调整

提示词权重可以通过中括号(降低)、小括号(增加)来调整、大括号(随机)对该提示词进行微调;也可以直接通过小括号后面接权重的方式来进行调整。
请添加图片描述
权重调整快捷键:选中提示词 Ctrl + 上键(增加);Ctrl + 下键(降低)。

3. 提示词进阶

(1)质量提升

因为Stable Diffusion的生图原理是对提示词进行匹配生成,故在提示词中增加质量提升的词组可以有效提高图片质量。
比如正向提示词:

  • 高质量:best quality, ultra-detailed, masterpiece
  • 高分辨率:high resolution, 8k wallpaper
  • 逼真:realistic
  • 动态视角:dynamic angle
  • 特定视角:from above, from below, wide shot, Aerial View
  • 人物比例:full body, upper body
  • 特定风格:cinematic lighting, vibrant colors, movie poster style
  • 特定艺术风格:starry night, thick brush strokes, blue and green tones
  • 特定光线和色彩:neon lights, city at night, bright colors
  • 特定视角和姿态:bird’s-eye view, peeking from window
    负向提示词:
  • 低质量:low quality, worst quality
  • 正常质量:normal quality
  • NSFW:Not Safe For Work,不适宜工作场合观看的内容
  • 水印:watermark
  • 文本:text
  • 不良解剖结构:bad anatomy
  • 绘制不佳的手:bad hands
  • 多余的手指:extra fingers
  • 手指融合:fused fingers
  • 手臂问题:extra arms, missing arms, mutated hands
  • 腿部问题:extra legs, missing legs
  • 模糊:blurry
  • 丑陋:ugly
  • 重复:duplicate
  • 病态:morbid
  • 残缺:mutilated
  • 变性:tranny
  • 低分辨率:low res
  • 皮肤问题:skin spots, acne, skin blemishes, age spot
  • 眼睛问题:unclear eyes
  • 其他身体问题:extra digit, fused fingers, too many fingers
  • 背景问题:out of frame, jpeg artifacts

(2)提示词结构

大致可按如下结构进行编写,可以依据设想场景中元素重要性和权重原理对顺序进行微调,但是同一类提示词的需要在一块儿。

[正向提示词/画风/画质] + [主体] + [环境/场景/构图] + [细节描述]

(3)提示词污染

在输入多个提示词的时候,可能会存在提示词污染现象,即几个提示词在图中表现到了一起。
这个时候可以通过break分离。

(4)提示词融合

如果我们希望两个提示词合成同一个东西,就要用到提示词融合。

  1. 用完全大写的AND进行连接
  2. 下划线连接
  3. [提示词1|提示词2]
    融合原理:先画前面的关键词,再画后面的关键词,最后再画前面的关键词。
    这个时候也可以通过{提示词1:提示词2:0.7}这种形式书写。
    其意思就是根据这个比例为提示词分配迭代次数的比例。前面的百分之70画提示词1的内容,后面的百分之30画提示词2的内容。

4. 提示增强外挂

(1)参考

参考模型下载网站上的提示词。
如在第三节中提到的带有效果预览的网站。

  1. LiblibAI-哩布哩布AI - 中国领先的AI创作平台
  2. FREE online image generator and model hosting site! | Tensor.Art (tusiart.com)
  3. 触手AI-AI图片生成工具产品-免费AI智能绘画生成在线平台 (acgnai.art)
  4. Civitai: The Home of Open-Source Generative AI

(2) 辅助网站

  1. 绘图提示:AI驱动的提示生成器 (drawing-prompt.com)
  2. PromptPerfect - AI Prompt Generator and Optimizer (jina.ai)
  3. Danbooru 标签超市 (novelai.dev)
  4. https://promlib.com/
  5. promptoMANIA: AI art community with prompt generator

(3) 增强插件

  1. ComfyUI_Custom_Nodes_AlekPet:将中文翻译为英文,使用方式在新建节点的地方选择AlekPet Nodes,里面有几种翻译方式。
    请添加图片描述
    在节点流中如下使用。
    请添加图片描述
  2. ComfyUI ArtGallery:这个插件提供了风格提示词的可视化预览,帮助用户更好的理解和使用。
  3. ComfyUI-Custom-Scripts:提供了提示词自动补全、对齐网格、模型预览等功能。

感谢阅读,如果你喜欢的我的内容欢迎点赞关注,下期讲解插件的安装及使用。

### ComfyUI 中基础调度器的相关信息 #### 基础调度器的作用 在 ComfyUI 的文生图工作流中,调度器(Scheduler)是一个核心组件,负责控制生成过程中的采样行为。其主要职责是在输入阶段接收用户定义的参数,并通过一系列算法调整扩散模型的行为,从而影响最终生成图像的质量和风格[^2]。 #### 调度器的工作原理 调度器基于扩散模型的数学理论运行,在生成过程中执行【输入】【处理】【输出】三个环节的操作。具体而言,调度器会根据预设的时间步长(Timesteps),逐步减少噪声并逼近目标图像分布。这一过程依赖于 AI 扩散模型内部的采样机制,而调度器则决定了每一步采样的策略和权重分配[^4]。 以下是调度器工作的简化流程: 1. **初始化参数**:设置时间步长、初始噪声水平以及其他超参数。 2. **迭代更新**:按照预定规则逐次降低噪声强度,同时优化潜在空间表示。 3. **生成结果**:当达到指定步数后,提取去噪后的潜变量作为最终图像数据。 #### 配置方式 配置调度器通常涉及以下几个方面: - **选择合适的调度器类型**:ComfyUI 支持多种调度器实现,例如 DDIM (Denoising Diffusion Implicit Models) 和 LMS Discrete Scheduler 等。不同类型的调度器适用于不同的应用场景,需根据需求合理选取[^5]。 - **调节关键参数**: - 步数(Steps):决定生成精度与速度之间的权衡;更多步数意味着更高质量但也更耗时。 - 宽高比例(Width/Height Ratio):用于设定输出图片尺寸大小关系。 - CFG Scale(Classifier-Free Guidance Scale):增强条件引导效果的程度指标,数值越大越倾向于遵循提示词描述特征[^3]。 下面展示如何利用 Python API 设置一个简单的调度器实例: ```python from diffusers import DDIMScheduler, StableDiffusionPipeline scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, num_train_timesteps=1000) pipeline = StableDiffusionPipeline.from_pretrained( "path/to/model", scheduler=scheduler) ``` 此代码片段展示了创建自定义 `DDIMScheduler` 并将其应用于稳定扩散流水线的过程。 #### 使用说明 要有效使用 ComfyUI 的基础调度器,建议新手从学习官方文档或社区分享的基础教程入手。熟悉界面布局之后,尝试构建简单的工作流以实践所学知识。随着经验积累逐渐探索高级特性如动态调整参数组合等技巧提升创作灵活性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值