赌徒破产问题,做tc时遇到,顺便拿来好好研究下
英文原版地址为:Gambler's Ruin
问题如下:
一个赌徒有h枚金币,每次有概率a获得一枚金币或者概率(1-a)丢掉一枚金币,直到其所有的金币总数达到N或0则游戏结束,求赌徒最终赢得N枚金币的概率P(N|h)。
对于两个状态我们可以确定,即P(N|N)=1、P(N|0)=0。同时得出状态转移公式(概率的推导和普通的DP还是很不一样的,好好体会下):
P(N|h) = a*P(N|h+1) + (1-a)*P(N|h-1)
这类公式可以表示为二阶线性递归关系,其特征多项式为(自行百度):
x^2 - 1/a * x + (1-a)/a = 0
求出特征方程的根为1和r=(1-a)/a,针对a==1/2的情况需要特殊处理。得到公式的通解为:
P(N|h) = A*(1^h) + B*(r^h)
根据已知条件P(N|N)=1、P(N|0)=0得:
1 = A + B*(r^N)
0 = A + B
A &#