赌徒破产问题

有这么一个赌博游戏,赢一块钱的概论是a,输一块钱的概论是b ,也就是1-a。如果有一个赌徒,开始始有10块钱,他想一直赌呀赌,要么把钱全输光破产, 要么赢到100块的时候收手。 那么现在问他能赢到在100块的可能性是多少 (或者概率是多少)?这就是著名的赌徒破产问题。

假设赌徒手里现在有10元钱,我们把赢到N元钱的概论记作Pr{N|10}。
我们可以知道:
P{N|0}=0, 明显你手里没有钱的时候,赢的概论是零
P{N|N}=1,你手里有N元钱,不用做任何事情,赢到N元钱的概论就是1

现在手里有10元钱,你下把要么是11块(赢),要么是9块(输), 就像我们开头说了玩一把赢的概论是a,输的概率是1-a。把下一把综合起来,我们可以推导出:
Pr{N|10}=a*Pr{N|11}+(1-a)*Pr{N|9}
更通用一点,我们把10换成变量h
Pr{N|h}=a*Pr{N|h+1}+(1-a)*Pr{N|h-1}

因此Pr{N|h} (h指0到N之间的数)满足二阶线性递推关系,这种递推关系的多项式如下:

它有两个特征根1和r=(1-a)/a, 一般情况下,这两个根不同的话,它的通解就是这两个特征根的连续幂的组合,因此Pr{N|h}:


已知P{N|0}=0,P{N|N}=1, 因此:


我们可以计算出如下: 因此一个人手里有h元,要赢到N元的概率是如下:

这是两个根不同的情况,如果a=1/2,我们会发现刚才方程有两个重根了,不适合这个模型,但是在a=1/2的时候,我们能推出:
Pr{N|h}=h/N.

因此,你有10块钱的时候,要想赢100块钱的概率其实是1/10, 因此你想赢的越多,你的概率越小, 想要无穷多的概率是0, 因此不收手,最后一定是破产。

阅读更多
个人分类: 编程技术
上一篇Map接口
下一篇数字签名
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭