《深度学习笔记》——防止梯度消失的学习笔记

1 前言

防止梯度消失是深层神经网络可以训练的原因之一,也是深度学习技术发展的基石;

2 归一化——“中心化和白化”

归一化是深度学习中很重要的预处理步骤,其目的是让“数据的分布”,具体来说,也就是均值为0、方差为1;
今天蔡老师在讲述这个内容时描述的是“中心化和白化”,我觉得这个描述也是挺好的,其中“中心化”就表达了均值为1的意思,“白化”就表达了“希望分布的形状尽可能接近一个大圆面”的意思;

3 BN——批归一化

我将BN放在了归一化的后面,因为我觉得这两者实现的功能是是有共同之处的,

  • 归一化在预处理的时候实现数据分布的归一化
  • BN(批归一化)实现了每一层特征的归一化
    从而当特征图实现归一化时,再配合激活函数时,(即使是使用sigmoid函数),也可以有效地防止梯度消失的问题;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值