1 前言
防止梯度消失是深层神经网络可以训练的原因之一,也是深度学习技术发展的基石;
2 归一化——“中心化和白化”
归一化是深度学习中很重要的预处理步骤,其目的是让“数据的分布”,具体来说,也就是均值为0、方差为1;
今天蔡老师在讲述这个内容时描述的是“中心化和白化”,我觉得这个描述也是挺好的,其中“中心化”就表达了均值为1的意思,“白化”就表达了“希望分布的形状尽可能接近一个大圆面”的意思;
3 BN——批归一化
我将BN放在了归一化的后面,因为我觉得这两者实现的功能是是有共同之处的,
- 归一化在预处理的时候实现数据分布的归一化
- BN(批归一化)实现了每一层特征的归一化
从而当特征图实现归一化时,再配合激活函数时,(即使是使用sigmoid函数),也可以有效地防止梯度消失的问题;