RT-DETR的学习笔记

1. RT-DETR

GitHub: PaddleDetection/tree/develop/configs/rtdetr

2. 复现训练流程

2.1 原文使用设备

在这里插入图片描述

2.2 环境要求

4*v100
cuda >= 11.7.1
nccl >= 2.7
paddlepaddle-gpu >= 2.4.1

2.3 创建conda环境

conda create --name ppdet python=3.10

2.4 确认NCCL版本号

cat /usr/include/nccl.h | grep NCCL_MAJOR -A 2

2.5 安装RT-DETR推荐的paddle版本

前往官网安装当前稳定的paddle版本,[paddle-stable]

2.5 Clone项目代码

git clone -b develop \
https://github.com/PaddlePaddle/PaddleDetection.git

若无法正常连接GitHub,使用以下命令clone代码

AIStudio

拉取develop分支

!git clone -b develop \
https://gitee.com/paddlepaddle/PaddleDetection.git
矩阵云
git clone -b develop \
https://gitee.com/paddlepaddle/PaddleDetection.git

2.6 安装第三方依赖

cd PaddleDetection
pip install -r requirements.txt

2.7 配置cuDNN

安装cuDNN请参考《CUDA & cuDNN Installbook by Eric》

配置环境变量

export LD_LIBRARY_PATH=/home/songyuc/anaconda3/envs/paddle/lib

Note:这一步如果不配置的话,后面进行ppdet框架测试的时候就会报错。

2.7 编译PPDet

编译安装:

python setup.py install

验证测试:

python ppdet/modeling/tests/test_architectures.py

2.8 解压数据集压缩包 [AIStudio]

2.9 估计训练时间

RT-DETR-R101: FLOPs≈259G, 4 days

在这里插入图片描述

RT-DETR-X: FLOPs≈234G, 4 days

在这里插入图片描述

2.10 存储管理

训练之后新增的文件夹:log & output

3. Ubuntu移植笔记

python tools/train.py -c configs/rtdetr/rtdetr_hgnetv2_l_6x_coco.yml \
--eval
### 关于 RT-DETR 的代码实现与复现教程 RT-DETR 是一种基于 Transformer 的实时目标检测算法,在 CVPR 2024 上发布,其官方仓库提供了详细的代码实现和文档支持。以下是有关 RT-DETR 的代码实现、教程以及如何获取相关内容的信息。 #### 官方 GitHub 仓库 官方代码托管在 GitHub 平台上,可以通过以下链接访问并克隆项目到本地环境: ```bash git clone https://github.com/lyuwenyu/RT-DETR.git ``` 此命令会将整个项目的源码下载至当前目录下[^2]。用户可以进一步查看 `README.md` 文件中的安装指南和运行说明来了解具体操作流程。 #### 主要功能模块介绍 RT-DETR 提供了两种框架的支持——PaddlePaddle 和 PyTorch,分别满足不同开发者的需求: 1. **数据预处理部分** 数据集准备阶段通常涉及 COCO 或其他自定义格式的数据加载器设计。这部分逻辑位于 `datasets/coco.py` 中,包含了图像增强策略如随机裁剪、翻转等功能[^1]。 2. **模型架构构建** 实现核心在于定义 DETR 类型网络结构及其变体形式。文件路径大概率会在 `models/rtdetr.py` 下找到相应类定义方法,其中涵盖了编码解码机制的设计思路。 3. **训练过程管理** 训练脚本一般命名为 `train.py`, 支持多GPU分布式训练选项设置参数调整学习率衰减周期等超参配置项。 4. **推理测试环节** 推理端口开放给最终使用者调用预测接口完成新样本分类定位任务;对应位置可能是 `tools/infer_simple.py` 这样的命名风格。 #### 获取帮助资源建议 除了阅读上述提到的各个子组件外,还可以参考如下途径加深理解程度: - 浏览 Issues 页面提问交流经验分享解决方案; - 加入社区讨论组订阅邮件列表保持同步更新动态消息; - 查阅 Wiki 部分是否有额外补充材料可供查阅学习参考资料。 ```python import torch from models.rtdetr import build_model device = 'cuda' if torch.cuda.is_available() else 'cpu' model, criterion, postprocessors = build_model() model.to(device) print(model) ``` 以上展示了简单的实例化建模过程演示片段。 ---
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值