YOLOv10改进 | SPPF篇 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)

 一、本文介绍

本文给大家带来是用最新的RT-DETR模型中的AIFI模块间去替换YOLOv10中的SPPF。RT-DETR号称是打败YOLO的检测模型,其作为一种基于Transformer的检测方法,相较于传统的基于卷积的检测方法,提供了更为全面和深入的特征理解,将RT-DETR中的一些先进模块融入到YOLOv10往往能够达到一些特殊的效果(我个人猜测,所以我进行了一些实验来验证这一点),我将RT-DETR的AIFI模块和Conv模块融合在一起添加到了YOLOv10中。亲测这一改进并不一定能够提高精度我用了三个数据集来试(没有涨点就是没有涨点,我不能够没有涨点还去告诉你涨点这样也耽误大家的时间),但为啥要发出来这个AIFI首先其能够达到轻量化模型的作用的,其次其能够和RT-DETR模型的其他模块融合可以达到好的效果所以发出来想要给的是轻量化读者来使用的,因为发论文并不一定要提高精度轻量化模型也是一个方向。

(我实测直接替换SPPF是有降点的在我测试的三个数据集,所以我参考了RT-DETR模型的网络结构在AIFI之后额外添加一个Conv模块)

  专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

参数量对比图如下->


目录

 一、本文介绍

二、RT-DETR的AIFI框架原理

2.1 AIFI的基本原理

三、AIFI的完整代码

 四、手把手教你添加AIFI模块

4.1 AIFI的添加教程

### YOLOv11 SPPF Module Implementation and Usage The Spatial Pyramid Pooling Fixed (SPPF) layer is a crucial component of the YOLO architecture, designed to enhance feature extraction by aggregating multi-scale information. In YOLOv11, this module plays an essential role in improving model performance on various datasets. #### Definition and Functionality The SPPF layer applies multiple pooling operations at different scales over the input features and concatenates their outputs. This allows the network to capture richer contextual information from varying receptive fields without increasing computational cost significantly[^4]. In practice, the SPPF operation can be implemented as follows: ```python import torch.nn as nn class SPPF(nn.Module): def __init__(in_channels, out_channels, kernel_size=5): super(SPPF, self).__init__() hidden_channels = in_channels // 2 # Define convolution layers before and after spatial pyramid pooling self.conv1 = nn.Conv2d(in_channels, hidden_channels, 1, stride=1, padding=0) self.pool = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size//2) self.conv2 = nn.Conv2d(hidden_channels * 4, out_channels, 1, stride=1) def forward(self, x): x = self.conv1(x) y1 = self.pool(x) y2 = self.pool(y1) y3 = self.pool(y2) concatenated_features = torch.cat([x, y1, y2, y3], dim=1) output = self.conv2(concatenated_features) return output ``` This code defines how the SPPF layer operates within the context of object detection models like YOLOv11. By stacking max-pooling results with progressively larger kernels, it effectively captures more extensive regions around each point while maintaining resolution through concatenation. However, when attempting improvements such as replacing SPPF with alternative modules like those found in RT-DETR or adding additional convolutions post-AIFI, careful consideration must be given to ensure that these changes do not degrade overall accuracy[^2]. --related questions-- 1. How does incorporating recursive feature pyramids affect the efficiency of object detectors? 2. What are some potential drawbacks associated with substituting traditional components like SPPF for newer alternatives? 3. Can you explain why certain modifications might lead to decreased rather than increased performance metrics during testing phases? 4. Are there specific scenarios where using fixed-size pooling instead of adaptive approaches offers advantages?
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值