华为盘古气象大模型|登Nature

华为云的盘古气象大模型以3DEarth-SpecificTransformer处理3D气象数据,解决现有AI预报精度不足的问题。该模型在24小时全球气象预报中只需1.4秒,精度超过传统数值预报,且在台风路径预报中表现出色。其快速、高精度的特点为气象预测带来革命,且资源需求低,为发展中国家提供机遇。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

比传统方法快1万倍、只需要1.4秒就能完成24小时全球气象预报——
它就是来自华为云的盘古气象大模型

今天,它登上了Nature,据称还是近年来首篇以中国科技公司作为唯一署名单位发表的Nature正刊论文

70699aa139cefe543cbd23ff2714ef3b.jpeg

那么,它究竟是如何被开发出来的?解决了哪些关键难题?又有何具体成效和应用?

顺着这篇文章带你一探究竟。

破解现有AI气象预报模型精度不足问题

上世纪20年代以来,特别是近三十年随着算力的迅速发展,传统的数值天气预报在每日天气预报、极端灾害预警、气候变化预测等领域取得了巨大的成功。

但是随着算力增长的趋缓和物理模型的逐渐复杂化,这一方式的瓶颈日益突出。

于是研究者们开始挖掘新的气象预报范式如使用深度学习方法预测未来天气。

华为云研发团队于2年前开始这方面的研究。

他们发现,在数值方法应用最广泛的领域如中长期预报中,现有的AI预报方法精度仍然显著低于数值预报方法,并受到可解释性欠缺,极端天气预测不准等问题的制约。

而造成AI气象预报模型的精度不足主要有两个原因:

第一,现有的AI气象预报模型都是基于2D神经网络,无法很好地处理不均匀的3D气象数据;

第二,AI方法缺少数学物理机理约束,因此在迭代的过程中会不断积累迭代误差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值